Nuclei Segmentation in Hepatocytes Using YOLO and SAM

被引:0
作者
da Silva, Sergio A., Jr. [1 ]
Berton, Leandro E. F. [1 ]
Carvalho, Mateus F. T. [1 ]
Bernardo, Carla C. O. [2 ]
Perles, Juliana V. C. M. [2 ]
Zanoni, Jacqueline N. [2 ]
Nanni, Loris [3 ]
Sevilha, Andre L. R. G. [2 ]
Felipe, Gustavo Z. [1 ]
Flores, Franklin C. [1 ]
Costa, Yandre M. G. [1 ]
机构
[1] Univ Estadual Maringa, Dept Informat, Maringa, Brazil
[2] Univ Estadual Maringa, Dept Morphol Sci, Maringa, Brazil
[3] Univ Padua, Dept Informat Engn, Padua, Italy
来源
2024 31ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2024 | 2024年
关键词
Object detection; Segmentation; Quantification; YOLO; Segment Anything Model;
D O I
10.1109/IWSSIP62407.2024.10634020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a hybrid approach that integrates the YOLO architecture for the detection of hepatocyte nuclei and the SAM for the segmentation of these cellular structures. This hybrid approach aims to facilitate and improve the task of quantification and morphometry analysis of cells in histopathological images, thereby providing researchers with a tool for automating their analysis without significant statistical difference from manual annotation. Three different versions of the YOLO model were tested: YOLOv3, YOLOv8, and YOLOv9. They achieved an AP of 70.28%, 70.98%, and 71.5% respectively. In terms of precision and recall, YOLOv3 achieved 90.7% and 92.4%, YOLOv8 achieved 90.4% and 92.94%, and YOLOv9 achieved 92.16% and 93.66%. According to the paired t-test, none of the YOLO models showed a significant statistical difference compared to human annotation. For morphometry analysis, we evaluated the default SAM and the fine-tuned models MED-SAM and Micro-SAM. The best results were obtained by the default SAM model, with a Dice coefficient of 93.65% and an IOU of 88.2%.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system [J].
Al-masni, Mohammed A. ;
Al-antari, Mugahed A. ;
Park, Jeong-Min ;
Gi, Geon ;
Kim, Tae-Yeon ;
Rivera, Patricio ;
Valarezo, Edwin ;
Choi, Mun-Taek ;
Han, Seung-Moo ;
Kim, Tae-Seong .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 157 :85-94
[2]  
Archit A., 2023, BIORXIV, DOI [10.1101/2023.08.21.554208, DOI 10.1101/2023.08.21.554208]
[3]  
Bernardo C. C. O., 2021, Master's thesis,
[4]  
Bommasani R., 2021, arXiv
[5]   Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Bray, Freddie ;
Laversanne, Mathieu ;
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2024, 74 (03) :229-263
[6]   Cancer Identification in Walker 256 Tumor Model Exploring Texture Properties Taken from Microphotograph of Rats Liver [J].
Carvalho, Mateus F. T. ;
Silva Jr, Sergio A. ;
Bernardo, Carla Cristina O. ;
Flores, Franklin Cesar ;
Perles, Juliana Vanessa C. M. ;
Zanoni, Jacqueline Nelisis ;
Costa, Yandre M. G. .
ALGORITHMS, 2022, 15 (08)
[7]   GPT-3: Its Nature, Scope, Limits, and Consequences [J].
Floridi, Luciano ;
Chiriatti, Massimo .
MINDS AND MACHINES, 2020, 30 (04) :681-694
[8]   Segment anything model for medical images? [J].
Huang, Yuhao ;
Yang, Xin ;
Liu, Lian ;
Zhou, Han ;
Chang, Ao ;
Zhou, Xinrui ;
Chen, Rusi ;
Yu, Junxuan ;
Chen, Jiongquan ;
Chen, Chaoyu ;
Liu, Sijing ;
Chi, Haozhe ;
Hu, Xindi ;
Yue, Kejuan ;
Li, Lei ;
Grau, Vicente ;
Fan, Deng-Ping ;
Dong, Fajin ;
Ni, Dong .
MEDICAL IMAGE ANALYSIS, 2024, 92
[9]   YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection [J].
Hussain, Muhammad .
MACHINES, 2023, 11 (07)
[10]  
Jocher G., 2023, Ultralytics YOLO