Error analysis of a high-order fully discrete method for two-dimensional time-fractional convection-diffusion equations exhibiting weak initial singularity

被引:0
作者
Singh, Anshima [1 ]
Kumar, Sunil [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
关键词
Two-dimensional problems; Time-fractional convection-diffusion; Caputo derivative; Fitted mesh; Singularity; High order; ADI scheme; Error bound; FINITE-DIFFERENCE METHOD; COMPACT ADI METHOD; SCHEME; APPROXIMATION; MODEL; MESH;
D O I
10.1007/s11075-024-01877-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study presents a novel high-order numerical method designed for solving the two-dimensional time-fractional convection-diffusion (TFCD) equation. The Caputo definition is employed to characterize the time-fractional derivative. A weak singularity at the initial time (t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}) is encountered in the considered problem. To overcome this, we consider the high-order L2-1 sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\sigma $$\end{document} formula on a suitably designed non-uniform fitted mesh, to discretize the time-fractional derivative. Further, a high-order two-dimensional compact operator is developed to approximate the spatial variables. Moreover, an alternating direction implicit (ADI) approach is designed to solve the resulting system of equations by decomposing the two-dimensional problem into two separate one-dimensional problems. The theoretical analysis, encompassing both stability and convergence aspects, is conducted comprehensively. More precisely, it is shown that method is convergent of order ONt-min{3-alpha,theta alpha,1+alpha,2}+hx4+hy4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O\left( {N_t<^>{-\min \{3-\alpha ,\theta \alpha ,1+\alpha ,2\}}}+h_x<^>4+h_y<^>4\right) $$\end{document}, where alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} represents the order of the fractional derivative, theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is a parameter which is utilized in the construction of the fitted mesh, Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_t$$\end{document} is the temporal discretization parameter, and hx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_x$$\end{document} and hy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_y$$\end{document} represent the spatial mesh widths. The numerical outcomes for three test problems, each featuring the nonsmooth solution, verified the theoretical findings. Further, the proposed method on fitted meshes exhibits superior numerical accuracy in comparison to the existing methods.
引用
收藏
页码:251 / 284
页数:34
相关论文
共 39 条
  • [11] THE APPLICATION OF HIGH-ORDER DIFFERENCING TO THE SCALAR WAVE-EQUATION
    DABLAIN, MA
    [J]. GEOPHYSICS, 1986, 51 (01) : 54 - 66
  • [12] High-Order Methods for Systems of Fractional Ordinary Differential Equations and Their Application to Time-Fractional Diffusion Equations
    Ferras, Luis L.
    Ford, Neville
    Morgado, Maria Luisa
    Rebelo, Magda
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2021, 15 (04) : 535 - 551
  • [13] A compact finite difference scheme for the fractional sub-diffusion equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) : 586 - 595
  • [14] An efficient wavelet based approximation method to water quality assessment model in a uniform channel
    Hariharan, G.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2014, 5 (02) : 525 - 532
  • [15] A thermal analogy for modelling drug elution from cardiovascular stents
    Hose, D.R.
    Narracott, A.J.
    Griffiths, B.
    Mahmood, S.
    Gunn, J.
    Sweeney, D.
    Lawford, P.V.
    [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2004, 7 (05) : 257 - 264
  • [16] Vaginal drug distribution modeling
    Katz, David F.
    Yuan, Andrew
    Gao, Yajing
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2015, 92 : 2 - 13
  • [17] Multiphase porous media modelling: A novel approach to predicting food processing performance
    Khan, Md. Imran H.
    Joardder, M. U. H.
    Kumar, Chandan
    Karim, M. A.
    [J]. CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2018, 58 (04) : 528 - 546
  • [18] A high order convergent numerical method for singularly perturbed time dependent problems using mesh equidistribution
    Kumar, Sunil
    Sumit
    Vigo-Aguiar, Jesus
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 199 : 287 - 306
  • [19] Conjugate heat and mass transfer in the lattice Boltzmann equation method
    Li, Like
    Chen, Chen
    Mei, Renwei
    Klausner, James F.
    [J]. PHYSICAL REVIEW E, 2014, 89 (04):
  • [20] A Second-Order Scheme with Nonuniform Time Steps for a Linear Reaction-Subdiffusion Problem
    Liao, Hong-Lin
    McLean, William
    Zhang, Jiwei
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (02) : 567 - 601