Error analysis of a high-order fully discrete method for two-dimensional time-fractional convection-diffusion equations exhibiting weak initial singularity

被引:0
作者
Singh, Anshima [1 ]
Kumar, Sunil [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
关键词
Two-dimensional problems; Time-fractional convection-diffusion; Caputo derivative; Fitted mesh; Singularity; High order; ADI scheme; Error bound; FINITE-DIFFERENCE METHOD; COMPACT ADI METHOD; SCHEME; APPROXIMATION; MODEL; MESH;
D O I
10.1007/s11075-024-01877-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study presents a novel high-order numerical method designed for solving the two-dimensional time-fractional convection-diffusion (TFCD) equation. The Caputo definition is employed to characterize the time-fractional derivative. A weak singularity at the initial time (t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}) is encountered in the considered problem. To overcome this, we consider the high-order L2-1 sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\sigma $$\end{document} formula on a suitably designed non-uniform fitted mesh, to discretize the time-fractional derivative. Further, a high-order two-dimensional compact operator is developed to approximate the spatial variables. Moreover, an alternating direction implicit (ADI) approach is designed to solve the resulting system of equations by decomposing the two-dimensional problem into two separate one-dimensional problems. The theoretical analysis, encompassing both stability and convergence aspects, is conducted comprehensively. More precisely, it is shown that method is convergent of order ONt-min{3-alpha,theta alpha,1+alpha,2}+hx4+hy4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O\left( {N_t<^>{-\min \{3-\alpha ,\theta \alpha ,1+\alpha ,2\}}}+h_x<^>4+h_y<^>4\right) $$\end{document}, where alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} represents the order of the fractional derivative, theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is a parameter which is utilized in the construction of the fitted mesh, Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_t$$\end{document} is the temporal discretization parameter, and hx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_x$$\end{document} and hy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_y$$\end{document} represent the spatial mesh widths. The numerical outcomes for three test problems, each featuring the nonsmooth solution, verified the theoretical findings. Further, the proposed method on fitted meshes exhibits superior numerical accuracy in comparison to the existing methods.
引用
收藏
页码:251 / 284
页数:34
相关论文
共 39 条
  • [1] BRENT AD, 1988, NUMER HEAT TRANSFER, V13, P297, DOI 10.1080/10407788808913615
  • [2] Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport
    Carroll, Grainne T.
    Devereux, Paul D.
    Ku, David N.
    McGloughlin, Timothy M.
    Walsh, Michael T.
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2010, 9
  • [3] Numerical approximation of a time-fractional Black-Scholes equation
    Cen, Zhongdi
    Huang, Jian
    Xu, Aimin
    Le, Anbo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2874 - 2887
  • [4] Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem
    Chen, Hu
    Stynes, Martin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 624 - 647
  • [5] L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity
    Chen, Hu
    Hu, Xiaohan
    Ren, Jincheng
    Sun, Tao
    Tang, Yifa
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2019, 10 (01)
  • [6] Two L1 Schemes on Graded Meshes for Fractional Feynman-Kac Equation
    Chen, Minghua
    Jiang, Suzhen
    Bu, Weiping
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [7] ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation
    Chen S.
    Liu F.
    [J]. J. Appl. Math. Comp., 2008, 1-2 (295-311): : 295 - 311
  • [8] Adaptive Hybrid Model-Enabled Sensing System (HMSS) for Mobile Fine-Grained Air Pollution Estimation
    Chen, Xinlei
    Xu, Susu
    Liu, Xinyu
    Xu, Xiangxiang
    Noh, Hae Young
    Zhang, Lin
    Zhang, Pei
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) : 1927 - 1944
  • [9] Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients
    Cui, Mingrong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 : 143 - 163
  • [10] Compact finite difference method for the fractional diffusion equation
    Cui, Mingrong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) : 7792 - 7804