High Order Asymptotic Preserving and Well-Balanced Schemes for the Shallow Water Equations with Source Terms

被引:1
作者
Huang, Guanlan [1 ,2 ,3 ,4 ]
Boscarino, Sebastiano [5 ]
Xiong, Tao [6 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, Key Lab Analyt Math & Applicat, Minist Educ, Fuzhou 350117, Fujian, Peoples R China
[3] Fujian Normal Univ, Fujian Key Lab Analyt Math & Applicat FJKLAMA, Fuzhou 350117, Fujian, Peoples R China
[4] Fujian Normal Univ, Ctr Appl Math Fujian Prov FJNU, Fuzhou 350117, Fujian, Peoples R China
[5] Univ Catania, Dept Math & Comp Sci, I-95125 Catania, Italy
[6] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
国家重点研发计划;
关键词
subject Key words; Shallow water equations; Manning friction; asymptotic preserving; well-balanced; implicit-explicit Runge-Kutta; high order; FINITE-VOLUME SCHEMES; DISCONTINUOUS GALERKIN METHODS; HYPERBOLIC CONSERVATION-LAWS; DIFFERENCE WENO SCHEMES; RUNGE-KUTTA SCHEMES; ELEMENT APPROXIMATION; SYSTEMS; EFFICIENT;
D O I
10.4208/cicp.OA-2023-0274
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we investigate the Shallow Water Equations incorporating source terms accounting for Manning friction and a non-flat bottom topology. Our primary focus is on developing and validating numerical schemes that serve a dual purpose: firstly, preserving all steady states within the model, and secondly, maintaining the late-time asymptotic behavior of solutions, which is governed by a diffusion equation and coincides with a long time and stiff friction limit. Our proposed approach draws inspiration from a penalization technique adopted in [Boscarino et al., SIAM Journal on Scientific Computing, 2014]. By employing an additive implicit-explicit Runge-Kutta method, the scheme can ensure a correct asymptotic behavior for the limiting diffusion equation, without suffering from a parabolic-type time step restriction which often afflicts multiscale problems in the diffusive limit. Numerical experiments are performed to illustrate high order accuracy, asymptotic preserving, and asymptotically accurate properties of the designed schemes.
引用
收藏
页码:1229 / 1262
页数:34
相关论文
共 55 条
[1]   Existence and uniqueness for a degenerate parabolic equation with L1-data [J].
Andreu, F ;
Mazón, JM ;
De León, SS ;
Toledo, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :285-306
[2]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[3]   FINITE-ELEMENT APPROXIMATION OF THE PARABOLIC P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :413-428
[4]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[5]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[6]   LATE-TIME/STIFF-RELAXATION ASYMPTOTIC-PRESERVING APPROXIMATIONS OF HYPERBOLIC EQUATIONS [J].
Berthon, Christophe ;
LeFloch, Philippe G. ;
Turpault, Rodolphe .
MATHEMATICS OF COMPUTATION, 2013, 82 (282) :831-860
[7]   IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS AND KINETIC EQUATIONS IN THE DIFFUSION LIMIT [J].
Boscarino, S. ;
Pareschi, L. ;
Russo, G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01) :A22-A51
[8]   HIGH ORDER SEMI-IMPLICIT WENO SCHEMES FOR ALL-MACH FULL EULER SYSTEM OF GAS DYNAMICS [J].
Boscarino, Sebastiano ;
Qiu, Jingmei ;
Russo, Giovanni ;
Xiong, Tao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02) :B368-B394
[9]   A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system [J].
Boscarino, Sebastiano ;
Qiu, Jing-Mei ;
Russo, Giovanni ;
Xiong, Tao .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 392 :594-618
[10]   High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations [J].
Boscarino, Sebastiano ;
Filbet, Francis ;
Russo, Giovanni .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (03) :975-1001