Extended Abstract: Entity Linking in GeoKBQA: Deep Learning Approaches for Enhanced Mention Detection

被引:0
作者
Choi, Daewoong [1 ]
Lee, Seokyong [1 ]
Yang, Jonghyeon [1 ]
Yu, Kiyun [1 ]
机构
[1] Seoul Natl Univ, Dept Civil & Environm Engn, Seoul, South Korea
来源
2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, IEEE BIGCOMP 2024 | 2024年
基金
新加坡国家研究基金会;
关键词
GeoKBQA; Entity Linking; Mention Detection; Deep Learning models; Fine-tuned; Few-shot prompting;
D O I
10.1109/BigComp60711.2024.00083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study addresses the integration of entity linking into geographic information-based question answering (GeoKBQA) systems, enhancing their performance using deep learning models for mention detection (MD). BERT, RoBERTa, and SpanBERT were fine-tuned on the NLMAPS dataset, which contains geographical questions for MD tasks, while ChatGPT utilized the 'few-shot prompting' approach. Fine-tuned BERT, RoBERTa, and SpanBERT models achieved Fl scores of 0.96, 0.97, and 0.89, while ChatGPT scored 0.99, demonstrating its effectiveness.
引用
收藏
页码:389 / 390
页数:2
相关论文
共 7 条
[1]   Automated Template Generation for Question Answering over Knowledge Graphs [J].
Abujabal, Abdalghani ;
Yahya, Mohamed ;
Riedewald, Mirek ;
Weikum, Gerhard .
PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), 2017, :1191-1200
[2]  
Cabrio E., 2012, P 13 INT SEM WEB C, P83
[3]  
Cui L., 2021, Template- Based Named Entity Recognition Using BART
[4]   Translating Place-Related Questions to GeoSPARQL Queries [J].
Hamzei, Ehsan ;
Tomko, Martin ;
Winter, Stephan .
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, :902-911
[5]  
MO RYU PUM, 2020, [Journal of Korean Institute of Information Technology, 한국정보기술학회논문지], V18, P39, DOI [10.14801/jkiit.2020.18.3.39, 10.14801/jkiit.2020.18.3.39]
[6]  
Shu Yiheng, 2022, P 2022 C EMPIRICAL M
[7]  
Zheng CM, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P357