Confirming the theoretical foundation of steady-state microbunching

被引:2
作者
Kruschinski, Arnold [1 ]
Deng, Xiujie [2 ,3 ]
Feikes, Joerg [1 ]
Hoehl, Arne [4 ]
Klein, Roman [4 ]
Li, Ji [1 ]
Ries, Markus [1 ]
Chao, Alexander [3 ,5 ]
机构
[1] Helmholtz Zentrum Berlin HZB, D-14109 Berlin, Germany
[2] Tsinghua Univ, Dept Engn Phys, Beijing, Peoples R China
[3] Tsinghua Univ, Inst Adv Study, Beijing, Peoples R China
[4] Phys Tech Bundesanstalt PTB, Berlin, Germany
[5] Stanford Univ, Stanford, CA USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
OPERATION;
D O I
10.1038/s42005-024-01657-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Steady-State Microbunching (SSMB) has been proposed as a concept to generate coherent synchrotron radiation at an electron storage ring. SSMB promises to supply kilowatt level average power radiation in the extreme ultraviolet regime, meeting the power level demands for lithography applications that presently cannot be fulfilled by established accelerator technologies. SSMB is under theoretical and experimental study, building on a proof-of-principle (PoP) experiment at the Metrology Light Source which previously showed the viability of the idea. Here we report experimental findings from systematic studies in the ongoing SSMB PoP experiment, where microbunching is generated from an energy modulation imposed by a laser of wavelength 1064 nm. The results confirm the expected dependence of the microbunching process on modulation amplitude and show that the influence of transverse-longitudinal coupling dynamics is as predicted. This confirmation of key parts of the SSMB theory establishes a solid footing for continuing the proof-of-principle efforts towards the goal of constructing a prototype SSMB light source facility. Steady-State Microbunching (SSMB) is emerging as a new concept for accelerator-based light sources to meet demands for high average power radiation at short wavelengths. The authors present findings from a proof-of-principle experiment that agree with theoretical expectations in multiple aspects, laying the foundation for the future realization of SSMB.
引用
收藏
页数:9
相关论文
共 39 条
[1]  
Bakshi V., 2018, SPIE, V2nd
[2]  
Chao A., 2016, P 7 INT PART ACC C I, P1048
[3]   Theory of the alternating-gradient synchrotron (Reprinted from Annals of Physics, vol 3, pg 1-48, 1958) [J].
Courant, ED ;
Snyder, HS .
ANNALS OF PHYSICS, 2000, 281 (1-2) :360-408
[4]   1ST OPERATION OF A FREE-ELECTRON LASER [J].
DEACON, DAG ;
ELIAS, LR ;
MADEY, JMJ ;
RAMIAN, GJ ;
SCHWETTMAN, HA ;
SMITH, TI .
PHYSICAL REVIEW LETTERS, 1977, 38 (16) :892-894
[5]   A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator [J].
Decking, W. ;
Abeghyan, S. ;
Abramian, P. ;
Abramsky, A. ;
Aguirre, A. ;
Albrecht, C. ;
Alou, P. ;
Altarelli, M. ;
Altmann, P. ;
Amyan, K. ;
Anashin, V ;
Apostolov, E. ;
Appel, K. ;
Auguste, D. ;
Ayvazyan, V ;
Baark, S. ;
Babies, F. ;
Baboi, N. ;
Bak, P. ;
Balandin, V ;
Baldinger, R. ;
Baranasic, B. ;
Barbanotti, S. ;
Belikov, O. ;
Belokurov, V ;
Belova, L. ;
Belyakov, V ;
Berry, S. ;
Bertucci, M. ;
Beutner, B. ;
Block, A. ;
Bloecher, M. ;
Boeckmann, T. ;
Bohm, C. ;
Boehnert, M. ;
Bondar, V ;
Bondarchuk, E. ;
Bonezzi, M. ;
Borowiec, P. ;
Boesch, C. ;
Boesenberg, U. ;
Bosotti, A. ;
Boespflug, R. ;
Bousonville, M. ;
Boyd, E. ;
Bozhko, Y. ;
Brand, A. ;
Branlard, J. ;
Briechle, S. ;
Brinker, F. .
NATURE PHOTONICS, 2020, 14 (06) :391-+
[6]  
Deng X., 2024, Theses
[7]   Breakdown of classical bunch length and energy spread formula in a quasi-isochronous electron storage ring [J].
Deng, X. J. ;
Chao, A. W. ;
Feikes, J. ;
Hoehl, A. ;
Huang, W. H. ;
Klein, R. ;
Kruschinski, A. ;
Li, J. ;
Ries, M. ;
Tang, C. X. .
PHYSICAL REVIEW A, 2023, 107 (05)
[8]   Average and statistical properties of coherent radiation from steady-state microbunching [J].
Deng, X. J. ;
Zhang, Y. ;
Pan, Z. L. ;
Li, Z. Z. ;
Bian, J. H. ;
Tsai, C-Y ;
Li, R. K. ;
Chao, A. W. ;
Huang, W. H. ;
Tang, C. X. .
JOURNAL OF SYNCHROTRON RADIATION, 2023, 30 :35-50
[9]   Courant-Snyder formalism of longitudinal dynamics [J].
Deng, X. J. ;
Chao, A. W. ;
Huang, W. H. ;
Tang, C. X. .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (09)
[10]   Harmonic generation and bunch compression based on transverse-longitudinal coupling [J].
Deng, X. J. ;
Huang, W. H. ;
Li, Z. Z. ;
Tang, C. X. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1019