Optimization study of a new β +- γ coincidence positron annihilation lifetime spectrometer using Geant4

被引:1
作者
Xu, W. [1 ]
Li, Y. H. [1 ]
Pan, Z. W. [1 ]
Liu, J. D. [1 ]
Zhang, H. J. [1 ]
Ye, B. J. [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Detection of defects; Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Timing detectors; Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes; APDs; Si-PMTs; G-APDs; CCDs; EBCCDs; EMCCDs; CMOS imagers; BETA(+)-GAMMA COINCIDENCE; ENERGY SELECTION; RESOLUTION; THERMALIZATION; SIMULATION; TIME;
D O I
10.1088/1748-0221/19/06/P06044
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Positron annihilation lifetime (PAL) spectroscopy is a unique method for characterizing atomic -scale defects and ultramicropores in materials. The conventional PAL spectrometer adopts the y - y coincidence principle, and its performance, especially the coincidence counting rate (CCR), can hardly be further increased. Another coincidence principle, f3 + - y coincidence, has the potential to simultaneously improve the CCR and coincidence time resolution (CTR) of PAL spectrometers. However, early f3 + - y coincidence PAL spectrometers have not been widely applied due to the considerable room for improvement in their performance. In this work, we proposed a new f3 + - y coincidence PAL spectrometer utilizing silicon photomultiplier (SiPM) array as the positron detector and conducted a comprehensive optimization of its structure with the aim of achieving a breakthrough in performance. The effects of start signal threshold and structure parameters on its CTR, CCR, and proportion of source contribution ( P SC ) were studied using Geant4. The simulation results show that, with a 68 Ge positron source of 30 mu Ci, the optimized f3 + - y coincidence PAL spectrometer can achieve an extremely high CCR exceeding 10000 counts per second (cps) and an outstanding CTR below 160 picoseconds (ps) while maintaining a low P SC below 12%. This study provides valuable guidance for constructing high-performance f3 + - y coincidence PAL spectrometers.
引用
收藏
页数:20
相关论文
共 52 条
[1]   Understanding and simulating SiPMs [J].
Acerbi, Fabio ;
Gundacker, Stefan .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 926 :16-35
[2]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[3]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[4]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[5]  
[Anonymous], Datasheet for plastic scintillator: EJ-228,EJ-232,EJ-204
[6]   High-resolution positron lifetime measurement using ultra fast digitizers Acqiris DC211 [J].
Becvar, F. ;
Cizek, J. ;
Prochazka, I. .
APPLIED SURFACE SCIENCE, 2008, 255 (01) :111-114
[7]  
BECVAR F, 1995, MATER SCI FORUM, V175-, P947, DOI 10.4028/www.scientific.net/MSF.175-178.947
[8]  
Becvár F, 2000, NUCL INSTRUM METH A, V443, P557, DOI 10.1016/S0168-9002(99)01156-0
[9]  
Born M., 2013, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, DOI DOI 10.1017/CBO9781139644181
[10]   THERMALIZATION AND DIFFUSION OF POSITRONS IN SOLIDS [J].
BRANDT, W ;
ARISTA, N .
PHYSICAL REVIEW B, 1982, 26 (08) :4229-4238