Stability of traveling wavefronts for advection-reaction-diffusion equation

被引:0
|
作者
Mei, Ming [1 ,2 ]
Xie, Ruijun [3 ]
机构
[1] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
基金
加拿大自然科学与工程研究理事会; 安徽省自然科学基金;
关键词
Traveling wavefronts; Stability; Advection-reaction-diffusion equation; Minimal wave speed;
D O I
10.1016/j.aml.2024.109075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an advection-reaction-diffusion equation, where the nonlinear advection has neither monotonicity nor variational structure. For all wavefronts with the speed c > c(0) , where c(0) is the minimal wave speed, we use the technical weighted energy method to prove that these wavefronts are exponentially stable, when the initial perturbations are small in a weighted Sobolev space.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts
    D'Ambrosio, Raffaele
    Moccaldi, Martina
    Paternoster, Beatrice
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (05) : 1029 - 1042
  • [2] Nonlinear Stability of Traveling Wavefronts for Delayed Reaction-diffusion Equation with Nonlocal Diffusion
    Ma, Zhaohai
    Yuan, Rong
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (04): : 871 - 896
  • [3] NUMERICAL SOLUTION OF FRACTIONAL ORDER ADVECTION-REACTION-DIFFUSION EQUATION
    Das, Subir
    Singh, Anup
    Ong, Seng Huat
    THERMAL SCIENCE, 2018, 22 : S309 - S316
  • [4] Numerical solution of the advection-reaction-diffusion equation at different scales
    Rubio, A. D.
    Zalts, A.
    El Hasi, C. D.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (01) : 90 - 95
  • [5] An adaptive stabilized finite element scheme for the advection-reaction-diffusion equation
    Araya, R
    Behrens, E
    Rodríguez, R
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (3-4) : 491 - 503
  • [6] Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems
    Zhao, Guangyu
    Ruan, Shigui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (04) : 1078 - 1147
  • [7] Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay
    Pan, Shuxia
    Li, Wan-Tong
    Lin, Guo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) : 3150 - 3158
  • [8] Front tracking for quantifying advection-reaction-diffusion
    Nevins, Thomas D.
    Kelley, Douglas H.
    CHAOS, 2017, 27 (04)
  • [9] NOVEL STABILITY RESULTS FOR TRAVELING WAVEFRONTS IN AN AGE-STRUCTURED REACTION-DIFFUSION EQUATION
    Mei, Ming
    Wong, Yau Shu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2009, 6 (04) : 743 - 752
  • [10] Optimal Stretching in Advection-Reaction-Diffusion Systems
    Nevins, Thomas D.
    Kelley, Douglas H.
    PHYSICAL REVIEW LETTERS, 2016, 117 (16)