Consecutive pure cubic fields with large class number

被引:0
作者
Byeon, Dongho [1 ]
Yhee, Donggeon [1 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Class number; Ideal class group; Pure cubic field;
D O I
10.1007/s11139-024-00912-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that for a given positive integer k, there are at least x1/3-o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x<^>{1/3-o(1)}$$\end{document} integers d <= x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \le x$$\end{document} such that the consecutive pure cubic fields Q(d+13)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\root 3 \of {d+1})$$\end{document}, & ctdot;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdots $$\end{document}, Q(d+k3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\root 3 \of {d+k})$$\end{document} have arbitrarily large class numbers.
引用
收藏
页码:717 / 724
页数:8
相关论文
共 10 条
[1]   Consecutive Real Quadratic Fields with Large Class Numbers [J].
Cherubini, Giacomo ;
Fazzari, Alessandro ;
Granville, Andrew ;
Kala, Viterslav ;
Yatsyna, Pavlo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) :12052-12063
[2]   Non-abelian number fields with very large class numbers [J].
Daileda, Ryan C. .
ACTA ARITHMETICA, 2006, 125 (03) :215-255
[3]  
HONDA T, 1971, J NUMBER THEORY, V3, P7, DOI DOI 10.1016/0022-314X(71)90045-X
[4]   On a conjecture of Iizuka [J].
Hoque, Azizul .
JOURNAL OF NUMBER THEORY, 2022, 238 :464-473
[5]   On the class number divisibility of pairs of imaginary quadratic fields [J].
Iizuka, Yoshichika .
JOURNAL OF NUMBER THEORY, 2018, 184 :122-127
[6]  
IWANIEC H., 2004, Colloquium Publications, V53
[7]  
Littlewood John E., 1928, Proceedings of the London Mathematical Society, P358
[8]   EFFECTIVE DETERMINATION OF THE DECOMPOSITION OF THE RATIONAL PRIMES IN A CUBIC FIELD [J].
LLORENTE, P ;
NART, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (04) :579-585
[9]   REAL QUADRATIC FIELDS WITH LARGE CLASS NUMBER [J].
MONTGOMERY, HL ;
WEINBERGER, PJ .
MATHEMATISCHE ANNALEN, 1977, 225 (02) :173-176
[10]   FUNDAMENTAL UNIT OF A PURELY CUBIC FIELD [J].
RUDMAN, RJ .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (01) :253-256