Numeraire-Invariant Quadratic Hedging and Mean-Variance Portfolio Allocation br

被引:0
作者
Cerny, Ales [1 ]
Czichowsky, Christoph [2 ]
Kallsen, Jan [3 ]
机构
[1] City Univ London, Bayes Business Sch, London EC1Y 8TZ, England
[2] London Sch Econ & Polit Sci, London WC2A 2AE, England
[3] Christian Albrechts Univ Kiel, D-24118 Kiel, Germany
关键词
quadratic hedging; numeraire change; oblique projection; mean-variance portfolio selection; no risk-free asset; POSITIVE SEMIDEFINITE MATRICES; LOW-RANK OPTIMIZATION; RIEMANNIAN OPTIMIZATION; CRITICAL-POINTS; GEOMETRY; MANIFOLD; ALGORITHMS; GEODESICS;
D O I
10.1287/moor.2023.1374
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper investigates quadratic hedging in a semimartingale market that does not necessarily contain a risk-free asset. An equivalence result for hedging with and without numeraire change is established. This permits direct computation of the optimal strategy without choosing a reference asset and/or performing a numeraire change. New explicit expressions for optimal strategies are obtained, featuring the use of oblique projections that provide unified treatment of the case with and without a risk-free asset. The analysis yields a streamlined computation of the efficient frontier for the pure investment problem in terms of three easily interpreted processes. The main result advances our understanding of the efficient frontier formation in the most general case in which a risk-free asset may not be present. Several illustrations of the numeraire-invariant approach are given
引用
收藏
页码:752 / 781
页数:30
相关论文
共 67 条
[1]  
Abraham R, 2012, Manifolds, Tensor Analysis, and Applications, V75
[2]  
Absil P.-A, 2013, Geometric Science of Information. First International Conference, GSI 2013. Proceedings. LNCS 8085, P361, DOI 10.1007/978-3-642-40020-9_39
[3]   A Geometric Newton Method for Oja's Vector Field [J].
Absil, P. -A. ;
Ishteva, M. ;
De Lathauwer, L. ;
Van Huffel, S. .
NEURAL COMPUTATION, 2009, 21 (05) :1415-1433
[4]   Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries [J].
Absil, P-A ;
Amodei, Luca ;
Meyer, Gilles .
COMPUTATIONAL STATISTICS, 2014, 29 (3-4) :569-590
[5]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[6]  
Ahn K, 2021, arXiv, DOI 10.48550/arXiv.2102.00937
[7]  
Bhatia R., 1997, MATRIX ANAL, DOI DOI 10.1007/978-1-4612-0653-8
[8]  
Bhojanapalli S, 2016, 29 ANN C LEARNING TH, V49, P530
[9]   RIEMANNIAN METRIC AND GEOMETRIC MEAN FOR POSITIVE SEMIDEFINITE MATRICES OF FIXED RANK [J].
Bonnabel, Silvere ;
Sepulchre, Rodolphe .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) :1055-1070
[10]  
BOUMAL N, 2011, ADV NEURAL INFORM PR, V24, P406