High-Energy-Density Fiber Supercapacitors Based on Transition Metal Oxide Nanoribbon Yarns for Comprehensive Wearable Electronics

被引:17
作者
Ahn, Junseong [1 ]
Sasikala, Suchithra Padmajan [2 ,3 ]
Jeong, Yongrok [6 ]
Kim, Jin Goo [2 ,3 ]
Ha, Ji-Hwan [4 ,5 ]
Hwang, Soon Hyoung [5 ]
Jeon, Sohee [5 ]
Choi, Junhyuk [5 ]
Kang, Byung-Ho [4 ,5 ]
Ahn, Jihyeon [4 ]
Jeong, Jun-Ho [5 ]
Kim, Sang Ouk [2 ,3 ]
Park, Inkyu [4 ]
机构
[1] Korea Univ, Dept Electro Mech Syst Engn, Sejong 30019, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol KAIST, Natl Creat Res Initiat, Ctr Multidimens Directed Nanoscale Assembly, Daejeon 34141, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, Daejeon 34141, South Korea
[5] Korea Inst Machinery & Mat KIMM, Dept Nano Mfg Technol, Daejeon 34103, South Korea
[6] Korea Atom Energy Res Inst KAERI, Radioisotope Res Div, Daejeon 34057, South Korea
基金
新加坡国家研究基金会;
关键词
Fiber supercapacitor; Transition metal oxide; Nanoribbon yarn; Wearable devices; Nanostructuring; GRAPHENE FIBERS; CARBON; PROGRESS;
D O I
10.1007/s42765-024-00462-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fiber supercapacitors (FSs) based on transition metal oxides (TMOs) have garnered considerable attention as energy storage solutions for wearable electronics owing to their exceptional characteristics, including superior comfortability and low weights. These materials are known to exhibit high energy densities, high specific capacitances, and fast redox reactions. However, current fabrication methods for these structures primarily rely on chemical deposition, often resulting in undesirable material structures and necessitating the use of additives, which can degrade the electrochemical performance of such structures. Herein, physically deposited TMO nanoribbon yarns generated via delamination engineering of nanopatterned TMO/metal/TMO trilayer arrays are proposed as potential high-performance FSs. To prepare these arrays, the target materials were initially deposited using a nanoline mold, and subsequently, the nanoribbon was suspended through selective plasma etching to obtain the desired twisted yarn structures. Because of the direct formation of TMOs on Ni electrodes, a high energy/power density and excellent electrochemical stability were achieved in asymmetric FS devices incorporating CoNixOy nanoribbon yarns and graphene fibers. Furthermore, a triboelectric nanogenerator, pressure sensor, and flexible light-emitting diode were synergistically combined with the FS. The integration of wearable electronic components, encompassing energy harvesting, energy storage, and powering sensing/display devices, is promising for the development of future smart textiles.
引用
收藏
页码:1927 / 1941
页数:15
相关论文
共 58 条
[1]   Nanoribbon Yarn with Versatile Inorganic Materials [J].
Ahn, Junseong ;
Jeong, Yongrok ;
Kang, Mingu ;
Ahn, Jihyeon ;
Sasikala, Suchithra Padmajan ;
Yang, Inyeong ;
Ha, Ji-Hwan ;
Hwang, Soon Hyoung ;
Jeon, Sohee ;
Gu, Jimin ;
Choi, Jungrak ;
Kang, Byung-Ho ;
Kim, Sang Ouk ;
Kim, Sanha ;
Choi, Junhyuk ;
Jeong, Jun-Ho ;
Park, Inkyu .
SMALL, 2024, 20 (38)
[2]   Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices [J].
Ahn, Junseong ;
Jeong, Yongrok ;
Gu, Jimin ;
Ha, Ji-Hwan ;
Ko, Jiwoo ;
Kang, Byeongmin ;
Hwang, Soon Hyoung ;
Park, Jaeho ;
Jeon, Sohee ;
Kim, Hwi ;
Jeong, Jun-Ho ;
Park, Inkyu .
ACS NANO, 2023, 17 (06) :5935-5942
[3]   Nanoscale three-dimensional fabrication based on mechanically guided assembly [J].
Ahn, Junseong ;
Ha, Ji-Hwan ;
Jeong, Yongrok ;
Jung, Young ;
Choi, Jungrak ;
Gu, Jimin ;
Hwang, Soon Hyoung ;
Kang, Mingu ;
Ko, Jiwoo ;
Cho, Seokjoo ;
Han, Hyeonseok ;
Kang, Kyungnam ;
Park, Jaeho ;
Jeon, Sohee ;
Jeong, Jun-Ho ;
Park, Inkyu .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   All-Recyclable Triboelectric Nanogenerator for Sustainable Ocean Monitoring Systems [J].
Ahn, Junseong ;
Kim, Ji-Seok ;
Jeong, Yoonsang ;
Hwang, Soonhyoung ;
Yoo, Hyunjoon ;
Jeong, Yongrok ;
Gu, Jimin ;
Mahato, Manmatha ;
Ko, Jiwoo ;
Jeon, Sohee ;
Ha, Ji-Hwan ;
Seo, Hee-Seon ;
Choi, Jungrak ;
Kang, Mingu ;
Han, Chankyu ;
Cho, Yohan ;
Lee, Chong Hyun ;
Jeong, Jun-Ho ;
Oh, Il-Kwon ;
Park, Inkyu .
ADVANCED ENERGY MATERIALS, 2022, 12 (30)
[5]   Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator [J].
Ahn, Junseong ;
Zhao, Zhi-Jun ;
Choi, Jungrak ;
Jeong, Yongrok ;
Hwang, Soonhyoung ;
Ko, Jiwoo ;
Gu, Jimin ;
Jeon, Sohee ;
Park, Jaeho ;
Kang, Mingu ;
Del Orbe, Dionisio V. ;
Cho, Incheol ;
Kang, Hyeokjung ;
Bok, Moonjeong ;
Jeong, Jun-Ho ;
Park, Inkyu .
NANO ENERGY, 2021, 85
[6]   The many faces of wearables [J].
不详 .
NATURE ELECTRONICS, 2022, 5 (11) :709-709
[7]   Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density [J].
Cai, Weihua ;
Lai, Ting ;
Lai, Jianwei ;
Xie, Haoting ;
Ouyang, Liuzhang ;
Ye, Jianshan ;
Yu, Chengzhong .
SCIENTIFIC REPORTS, 2016, 6
[8]   Microscopic mechanism for unipolar resistive switching behaviour of nickel oxides [J].
Chen, Y. S. ;
Kang, J. F. ;
Chen, B. ;
Gao, B. ;
Liu, L. F. ;
Liu, X. Y. ;
Wang, Y. Y. ;
Wu, L. ;
Yu, H. Y. ;
Wang, J. Y. ;
Chen, Q. ;
Wang, E. G. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (06)
[9]   A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2 [J].
Chen, Zhi ;
Li, Jingfeng ;
Li, Tianzhong ;
Fan, Taojian ;
Meng, Changle ;
Li, Chaozhou ;
Kang, Jianlong ;
Chai, Luxiao ;
Hao, Yabin ;
Tang, Yuxuan ;
Al-Hartomy, Omar A. ;
Wageh, Swelm ;
Al-Sehemi, Abdullah G. ;
Luo, Zhiguang ;
Yu, Jiangtian ;
Shao, Yonghong ;
Li, Defa ;
Feng, Shuai ;
Liu, William J. ;
He, Yaqing ;
Ma, Xiaopeng ;
Xie, Zhongjian ;
Zhang, Han .
NATIONAL SCIENCE REVIEW, 2022, 9 (08)
[10]   Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors [J].
Choi, Changsoon ;
Kim, Kang Min ;
Kim, Keon Jung ;
Lepro, Xavier ;
Spinks, Geoffrey M. ;
Baughman, Ray H. ;
Kim, Seon Jeong .
NATURE COMMUNICATIONS, 2016, 7