Scaling Clinical Trial Matching Using Large Language Models: A Case Study in Oncology

被引:0
作者
Wong, Cliff [1 ]
Zhang, Sheng [1 ]
Gu, Yu [1 ]
Moung, Christine [2 ]
Abel, Jacob [2 ]
Usuyama, Naoto [1 ]
Weerasinghe, Roshanthi [3 ]
Piening, Brian [4 ]
Naumann, Tristan [1 ]
Bifulco, Carlo [4 ]
Poon, Hoifung [1 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Providence Hlth & Serv, Mol Genom Lab, Portland, OR USA
[3] Providence Hlth & Serv, Clin Res Anal, Portland, OR USA
[4] Providence Canc Inst, Earle Chiles Res Inst, Portland, OR USA
来源
MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 219 | 2023年 / 219卷
关键词
EXTRACTION; SYSTEM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clinical trial matching is a key process in health delivery and discovery. In practice, it is plagued by overwhelming unstructured data and unscalable manual processing. In this paper, we conduct a systematic study on scaling clinical trial matching using large language models (LLMs), with oncology as the focus area. Our study is grounded in a clinical trial matching system currently in test deployment at a large U.S. health network. Initial findings are promising: out of box, cutting-edge LLMs, such as GPT-4, can already structure elaborate eligibility criteria of clinical trials and extract complex matching logic (e.g., nested AND/OR/NOT). While still far from perfect, LLMs substantially outperform prior strong baselines and may serve as a preliminary solution to help triage patient-trial candidates with humans in the loop. Our study also reveals a few significant growth areas for applying LLMs to end-to-end clinical trial matching, such as context limitation and accuracy, especially in structuring patient information from longitudinal medical records.
引用
收藏
页数:24
相关论文
共 24 条
[1]  
Achiam J., 2023, Gpt-4 technical report
[2]  
Brown T, 2020, Adv Neural Inf Process Syst, V33, P1877
[3]  
Bubeck S., 2023, Sparks of artificial general intelligence: Early experiments with GPT-4 (Talk)
[4]   Learning Eligibility in Cancer Clinical Trials Using Deep Neural Networks [J].
Bustos, Aurelia ;
Pertusa, Antonio .
APPLIED SCIENCES-BASEL, 2018, 8 (07)
[5]   COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching [J].
Gao, Junyi ;
Xiao, Cao ;
Glass, Lucas M. ;
Sun, Jimeng .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :803-812
[6]   EliIE: An open-source information extraction system for clinical trial eligibility criteria [J].
Kang, Tian ;
Zhang, Shaodian ;
Tang, Youlan ;
Hruby, Gregory W. ;
Rusanov, Alexander ;
Elhadad, Noemie ;
Weng, Chunhua .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (06) :1062-1071
[7]   OncoTree: A Cancer Classification System for Precision Oncology [J].
Kundra, Ritika ;
Zhang, Hongxin ;
Sheridan, Robert ;
Sirintrapun, Sahussapont Joseph ;
Wang, Avery ;
Ochoa, Angelica ;
Wilson, Manda ;
Gross, Benjamin ;
Sun, Yichao ;
Madupuri, Ramyasree ;
Satravada, Baby A. ;
Reales, Dalicia ;
Vakiani, Efsevia ;
Al-Ahmadie, Hikmat A. ;
Dogan, Ahmet ;
Arcila, Maria ;
Zehir, Ahmet ;
Maron, Steven ;
Berger, Michael F. ;
Viaplana, Cristina ;
Janeway, Katherine ;
Ducar, Matthew ;
Sholl, Lynette ;
Dogan, Snjezana ;
Bedard, Philippe ;
Surrey, Lea F. ;
Sanchez, Iker Huerga ;
Syed, Aijaz ;
Rema, Anoop Balakrishnan ;
Chakravarty, Debyani ;
Suehnholz, Sarah ;
Nissan, Moriah ;
Iyer, Gopakumar, V ;
Murali, Rajmohan ;
Bouvier, Nancy ;
Soslow, Robert A. ;
Hyman, David ;
Younes, Anas ;
Intlekofer, Andrew ;
Harding, James J. ;
Carvajal, Richard D. ;
Sabbatini, Paul J. ;
Abou-Alfa, Ghassan K. ;
Morris, Luc ;
Janjigian, Yelena Y. ;
Gallagher, Meighan M. ;
Soumerai, Tara A. ;
Mellinghoff, Ingo K. ;
Hakimi, Abraham A. ;
Fury, Matthew .
JCO CLINICAL CANCER INFORMATICS, 2021, 5 :221-230
[8]  
Lee P., 2023, AI REVOLUTION MED GP
[9]   Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine [J].
Lee, Peter ;
Bubeck, Sebastien ;
Petro, Joseph .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (13) :1233-1239
[10]  
Neumann Mark, Bioinformatics, V36, P1235, DOI [10.1093/bioinformatics/btz682, DOI 10.1093/BIOINFORMATICS/BTZ682]