Diatom-based biomass composites phase change materials with high thermal conductivity for battery thermal management

被引:59
作者
Xu, Weihao [1 ]
Yang, Wensheng [1 ]
Su, Jingtao [1 ]
Huang, Jintao [1 ]
Min, Yonggang [1 ]
Yu, Yunshi [1 ]
Zeng, Yueyu [1 ]
Chen, Peihui [1 ]
Wang, Yongzhen [2 ]
Li, Xinxi [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Dept Polymer Mat & Engn, Guangzhou 510006, Peoples R China
[2] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
关键词
Battery thermal management system; Composite phase change materials; Biomass; Thermal conductivity; Thermal stability; ENERGY-STORAGE; CONVERSION; OXIDE;
D O I
10.1016/j.est.2024.112737
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Battery thermal management systems (BTMs) are a significant strategy for controlling the operating temperature of lithium-ion batteries (LIBs) used in electric vehicles (EVs). A promising approach for mitigating the risk of battery exceeding the highest operating temperature is the utilization of composite phase change materials (CPCMs) in BTMs, which have the potential to be applied in EVs. In this study, a vacuum impregnation process was employed to prepare the biomass-based CPCMs (PPE-0, PPE-10, PPE-30 and PPE-50), consisting of diatomite as a supporting matrix, expanded graphite (EG) as an additive, and polyethylene glycol (PEG) as the phase change media. The PPE-10 exhibits an enhancement of melting enthalpy (116.81 J/g) and crystalline enthalpy (118.44 J/g). Meanwhile, the thermal conductivity of PPE-10 is 1.203 W/m & sdot;K, which is higher than PEG and PPE-0 by 4.02 times and 2.18 times, respectively. Furthermore, the battery modules with prepared CPCMs were carried out the charge and discharge processes at 1C and 2C discharge rates. The results illustrate that the battery modules with PPE-10 show excellent thermal management capability, which maintains the temperature below 60 degrees C during a 2C discharge rate. Consequently, this study provides a novel insight into developing biomassbased CPCMs with high thermal conductivity to enhance the safety of battery modules in EVs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Enhancing the light-thermal absorption and conversion capacity of diatom-based biomass/polyethylene glycol composites phase change material by introducing MXene
    Xu, Weihao
    Su, Jingtao
    Lin, Jiahui
    Huang, Jintao
    Weng, Mengman
    Min, Yonggang
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [2] Improving the thermal energy storage capability of diatom-based biomass/polyethylene glycol composites phase change materials by artificial culture methods
    Huang, Jintao
    Wu, Bangyao
    Lyu, Sha
    Li, Tao
    Han, He
    Li, Dandan
    Wang, Jaw-Kai
    Zhang, Jiangtao
    Lu, Xiang
    Sun, Dazhi
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 219
  • [3] High-Flexible Phase Change Composites with Enhanced Thermal Conductivity for Electronic Thermal Management
    Sun, Na
    Luo, Qianqian
    Li, Xiangqing
    Wang, Zhitao
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (01) : 778 - 786
  • [4] Enhanced thermal conductivity of wood-based phase change materials with copper for thermal management and solar-thermal conversion
    Liu, Chen
    Li, Jing
    Bai, Kaiwen
    Lv, Shanshan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 704
  • [5] Form-stable phase change composites with high thermal conductivity and electrical insulation
    Zhang, Huaqing
    Zhang, Shixian
    Li, Chenjian
    Shi, Zhuqun
    Yang, Quanling
    Wang, Shan
    Xiong, Chuanxi
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [6] Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management
    Zhang, Jiangyun
    Li, Xinxi
    Zhang, Guoqing
    Wang, Yongzhen
    Guo, Jianwei
    Wang, Ye
    Huang, Qiqiu
    Xiao, Changren
    Zhong, Zhaoda
    ENERGY CONVERSION AND MANAGEMENT, 2020, 204
  • [7] Preparation of flexible composite phase change material with high thermal conductivity for battery thermal management
    Hu, Jiayue
    Huang, Wenfei
    Ge, Xin
    Wang, Chunxiang
    Zhang, Guoqing
    Chen, Youpeng
    Tu, Chaoqun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [8] Thermal conductivity of cementitious composites containing microencapsulated phase change materials
    Ricklefs, Alex
    Thiele, Alexander M.
    Falzone, Gabriel
    Sant, Gaurav
    Pilon, Laurent
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 71 - 82
  • [9] Spider Web-Inspired Graphene Skeleton-Based High Thermal Conductivity Phase Change Nanocomposites for Battery Thermal Management
    Lin, Ying
    Kang, Qi
    Wei, Han
    Bao, Hua
    Jiang, Pingkai
    Mai, Yiu-Wing
    Huang, Xingyi
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [10] Research on the high thermal conductivity composite phase change materials with graphite nanosheets for battery thermal safety
    Li, Canbing
    Wu, Xiaowei
    Li, Songbo
    Yang, Wensheng
    Wu, Shiti
    Liu, Xiaozhou
    Li, Xinxi
    JOURNAL OF ENERGY STORAGE, 2023, 61