Folded Hamiltonian Monte Carlo for Bayesian Generative Adversarial Networks

被引:0
|
作者
Pourshahrokhi, Narges [1 ]
Li, Yunpeng [1 ]
Kouchaki, Samaneh [1 ,2 ]
Barnaghi, Payam [2 ,3 ]
机构
[1] Univ Surrey, Sch Comp Sci & Elect Engn, Guildford, Surrey, England
[2] UK Dementia Res Inst, Care Res & Technol Ctr, London, England
[3] Imperial Coll London, Dept Brain Sci, London, England
来源
ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222 | 2023年 / 222卷
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
Generative Adversarial Networks; Hamiltonian Monte Carlo; Data Imputation; Multi-modal; MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic modelling on Generative Adversarial Networks (GANs) within the Bayesian framework has shown success in estimating the complex distribution in literature. In this paper, we develop a Bayesian formulation for unsupervised and semi-supervised GAN learning. Specifically, we propose Folded Hamiltonian Monte Carlo (F-HMC) methods within this framework to learn the distributions over the parameters of the generators and discriminators. We show that the F-HMC efficiently approximates multi-modal and high dimensional data when combined with Bayesian GANs. Its composition improves run time and test error in generating diverse samples. Experimental results with high-dimensional synthetic multi-modal data and natural image benchmarks, including CIFAR-10, SVHN and ImageNet, show that F-HMC outperforms the state-of-the-art methods in terms of test error, run times per epoch, inception score and Frechet Inception Distance scores.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Split Hamiltonian Monte Carlo
    Babak Shahbaba
    Shiwei Lan
    Wesley O. Johnson
    Radford M. Neal
    Statistics and Computing, 2014, 24 : 339 - 349
  • [42] Magnetic Hamiltonian Monte Carlo
    Tripuraneni, Nilesh
    Rowland, Mark
    Ghahramani, Zoubin
    Turner, Richard
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [43] Split Hamiltonian Monte Carlo
    Shahbaba, Babak
    Lan, Shiwei
    Johnson, Wesley O.
    Neal, Radford M.
    STATISTICS AND COMPUTING, 2014, 24 (03) : 339 - 349
  • [44] Nonparametric Hamiltonian Monte Carlo
    Mak, Carol
    Zaiser, Fabian
    Ong, Luke
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [45] Microcanonical Hamiltonian Monte Carlo
    Robnik, Jakob
    De Luca, G. Bruno
    Silverstein, Eva
    Seljak, Uros
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [46] CONSERVATIVE HAMILTONIAN MONTE CARLO
    McGregor, Geoffrey
    Wan, Andy T.S.
    arXiv, 2022,
  • [47] Hamiltonian Monte Carlo Swindles
    Piponi, Dan
    Hoffman, Matthew D.
    Sountsov, Pavel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3774 - 3782
  • [48] RANDOMIZED HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Maria Sanz-Serna, Jesus
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2159 - 2194
  • [49] Wormhole Hamiltonian Monte Carlo
    Lan, Shiwei
    Streets, Jeffrey
    Shahbaba, Babak
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1953 - 1959
  • [50] Risk analysis using monte carlo simulation and bayesian networks
    Flores, Claudio
    Makiyama, Fernando
    Nassar, Silvia
    Freitas, Paulo
    Jacinto, Carlos
    PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 2292 - 2292