Folded Hamiltonian Monte Carlo for Bayesian Generative Adversarial Networks

被引:0
|
作者
Pourshahrokhi, Narges [1 ]
Li, Yunpeng [1 ]
Kouchaki, Samaneh [1 ,2 ]
Barnaghi, Payam [2 ,3 ]
机构
[1] Univ Surrey, Sch Comp Sci & Elect Engn, Guildford, Surrey, England
[2] UK Dementia Res Inst, Care Res & Technol Ctr, London, England
[3] Imperial Coll London, Dept Brain Sci, London, England
来源
ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222 | 2023年 / 222卷
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
Generative Adversarial Networks; Hamiltonian Monte Carlo; Data Imputation; Multi-modal; MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic modelling on Generative Adversarial Networks (GANs) within the Bayesian framework has shown success in estimating the complex distribution in literature. In this paper, we develop a Bayesian formulation for unsupervised and semi-supervised GAN learning. Specifically, we propose Folded Hamiltonian Monte Carlo (F-HMC) methods within this framework to learn the distributions over the parameters of the generators and discriminators. We show that the F-HMC efficiently approximates multi-modal and high dimensional data when combined with Bayesian GANs. Its composition improves run time and test error in generating diverse samples. Experimental results with high-dimensional synthetic multi-modal data and natural image benchmarks, including CIFAR-10, SVHN and ImageNet, show that F-HMC outperforms the state-of-the-art methods in terms of test error, run times per epoch, inception score and Frechet Inception Distance scores.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo
    Benker, Maximilian
    Furtner, Lukas
    Semm, Thomas
    Zaeh, Michael F.
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 61 : 799 - 807
  • [32] A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo
    Andrade, Jair
    Duggan, Jim
    SYSTEM DYNAMICS REVIEW, 2021, 37 (04) : 283 - 309
  • [33] Bayesian inference for generalized extreme value distributions via Hamiltonian Monte Carlo
    Hartmann, Marcelo
    Ehlers, Ricardo S.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (07) : 5285 - 5302
  • [34] A Bayesian cure rate regression model using Hamiltonian Monte Carlo methods
    Cancho, Vicente G.
    Sacramento, Michele M.
    Ortega, Edwin M. M.
    de Moraes, Talita E. N. T.
    Cordeiro, Gauss M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [35] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [36] Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models
    Zhang, Yichuan
    Sutton, Charles
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [37] Hamiltonian Monte Carlo based on evidence framework for Bayesian learning to neural network
    Ramchoun, Hassan
    Ettaouil, Mohamed
    SOFT COMPUTING, 2019, 23 (13) : 4815 - 4825
  • [38] Generalized Integral Transform and Hamiltonian Monte Carlo for Bayesian structural damage identification
    Cordeiro, C. E. Z.
    Stutz, L. T.
    Knupp, D. C.
    Matt, C. F. T.
    APPLIED MATHEMATICAL MODELLING, 2022, 104 : 243 - 258
  • [39] Bayesian Elastic Full-Waveform Inversion Using Hamiltonian Monte Carlo
    Gebraad, Lars
    Boehm, Christian
    Fichtner, Andreas
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (03)
  • [40] Hamiltonian Monte Carlo based on evidence framework for Bayesian learning to neural network
    Hassan Ramchoun
    Mohamed Ettaouil
    Soft Computing, 2019, 23 : 4815 - 4825