Folded Hamiltonian Monte Carlo for Bayesian Generative Adversarial Networks

被引:0
|
作者
Pourshahrokhi, Narges [1 ]
Li, Yunpeng [1 ]
Kouchaki, Samaneh [1 ,2 ]
Barnaghi, Payam [2 ,3 ]
机构
[1] Univ Surrey, Sch Comp Sci & Elect Engn, Guildford, Surrey, England
[2] UK Dementia Res Inst, Care Res & Technol Ctr, London, England
[3] Imperial Coll London, Dept Brain Sci, London, England
来源
ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222 | 2023年 / 222卷
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
Generative Adversarial Networks; Hamiltonian Monte Carlo; Data Imputation; Multi-modal; MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic modelling on Generative Adversarial Networks (GANs) within the Bayesian framework has shown success in estimating the complex distribution in literature. In this paper, we develop a Bayesian formulation for unsupervised and semi-supervised GAN learning. Specifically, we propose Folded Hamiltonian Monte Carlo (F-HMC) methods within this framework to learn the distributions over the parameters of the generators and discriminators. We show that the F-HMC efficiently approximates multi-modal and high dimensional data when combined with Bayesian GANs. Its composition improves run time and test error in generating diverse samples. Experimental results with high-dimensional synthetic multi-modal data and natural image benchmarks, including CIFAR-10, SVHN and ImageNet, show that F-HMC outperforms the state-of-the-art methods in terms of test error, run times per epoch, inception score and Frechet Inception Distance scores.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [22] Decentralized Bayesian learning with Metropolis-adjusted Hamiltonian Monte Carlo
    Vyacheslav Kungurtsev
    Adam Cobb
    Tara Javidi
    Brian Jalaian
    Machine Learning, 2023, 112 : 2791 - 2819
  • [23] Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo
    Monnahan, Cole C.
    Thorson, James T.
    Branch, Trevor A.
    METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (03): : 339 - 348
  • [24] Bayesian Estimation of Simultaneous Regression Quantiles Using Hamiltonian Monte Carlo
    Hachem, Hassan
    Abboud, Candy
    ALGORITHMS, 2024, 17 (06)
  • [25] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Zhize Li
    Tianyi Zhang
    Shuyu Cheng
    Jun Zhu
    Jian Li
    Machine Learning, 2019, 108 : 1701 - 1727
  • [26] On the Hierarchical Bernoulli Mixture Model Using Bayesian Hamiltonian Monte Carlo
    Suryaningtyas, Wahyuni
    Iriawan, Nur
    Kuswanto, Heri
    Zain, Ismaini
    SYMMETRY-BASEL, 2021, 13 (12):
  • [27] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Li, Zhize
    Zhang, Tianyi
    Cheng, Shuyu
    Zhu, Jun
    Li, Jian
    MACHINE LEARNING, 2019, 108 (8-9) : 1701 - 1727
  • [28] Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo
    Tucker, J. Derek
    Shand, Lyndsay
    Chowdhary, Kenny
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 163
  • [29] Decentralized Bayesian learning with Metropolis-adjusted Hamiltonian Monte Carlo
    Kungurtsev, Vyacheslav
    Cobb, Adam
    Javidi, Tara
    Jalaian, Brian
    MACHINE LEARNING, 2023, 112 (08) : 2791 - 2819
  • [30] Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo
    Benker, Maximilian
    Furtner, Lukas
    Semm, Thomas
    Zaeh, Michael F.
    Journal of Manufacturing Systems, 2021, 61 : 799 - 807