Folded Hamiltonian Monte Carlo for Bayesian Generative Adversarial Networks

被引:0
|
作者
Pourshahrokhi, Narges [1 ]
Li, Yunpeng [1 ]
Kouchaki, Samaneh [1 ,2 ]
Barnaghi, Payam [2 ,3 ]
机构
[1] Univ Surrey, Sch Comp Sci & Elect Engn, Guildford, Surrey, England
[2] UK Dementia Res Inst, Care Res & Technol Ctr, London, England
[3] Imperial Coll London, Dept Brain Sci, London, England
来源
ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222 | 2023年 / 222卷
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
Generative Adversarial Networks; Hamiltonian Monte Carlo; Data Imputation; Multi-modal; MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic modelling on Generative Adversarial Networks (GANs) within the Bayesian framework has shown success in estimating the complex distribution in literature. In this paper, we develop a Bayesian formulation for unsupervised and semi-supervised GAN learning. Specifically, we propose Folded Hamiltonian Monte Carlo (F-HMC) methods within this framework to learn the distributions over the parameters of the generators and discriminators. We show that the F-HMC efficiently approximates multi-modal and high dimensional data when combined with Bayesian GANs. Its composition improves run time and test error in generating diverse samples. Experimental results with high-dimensional synthetic multi-modal data and natural image benchmarks, including CIFAR-10, SVHN and ImageNet, show that F-HMC outperforms the state-of-the-art methods in terms of test error, run times per epoch, inception score and Frechet Inception Distance scores.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations☆
    Athey, Susan
    Imbens, Guido W.
    Metzger, Jonas
    Munro, Evan
    JOURNAL OF ECONOMETRICS, 2024, 240 (02)
  • [2] Hamiltonian quantum generative adversarial networks
    Kim, Leeseok
    Lloyd, Seth
    Marvian, Milad
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [3] Style-based quantum generative adversarial networks for Monte Carlo events
    Bravo-Prieto, Carlos
    Baglio, Julien
    Ce, Marco
    Francis, Anthony
    Grabowska, Dorota M.
    Carrazza, Stefano
    QUANTUM, 2022, 6
  • [4] Modified Hamiltonian Monte Carlo for Bayesian inference
    Radivojevic, Tijana
    Akhmatskaya, Elena
    STATISTICS AND COMPUTING, 2020, 30 (02) : 377 - 404
  • [5] Modified Hamiltonian Monte Carlo for Bayesian inference
    Tijana Radivojević
    Elena Akhmatskaya
    Statistics and Computing, 2020, 30 : 377 - 404
  • [6] Generative adversarial networks (GAN) for compact beam source modelling in Monte Carlo simulations
    Sarrut, D.
    Krah, N.
    Letang, J. M.
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (21):
  • [7] Bayesian protein superposition using Hamiltonian Monte Carlo
    Moreta, Lys Sanz
    Al-Sibahi, Ahmad Salim
    Hamelryck, Thomas
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 1 - 11
  • [8] Ideal Observer Computation by Use of Markov-Chain Monte Carlo With Generative Adversarial Networks
    Zhou, Weimin
    Villa, Umberto
    Anastasio, Mark A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3715 - 3724
  • [9] Markov-Chain Monte Carlo Approximation of the Ideal Observer using Generative Adversarial Networks
    Zhou, Weimin
    Anastasio, Mark A.
    MEDICAL IMAGING 2020: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2020, 11316
  • [10] A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
    Wang, Hongjun
    Li, Guanbin
    Liu, Xiaobai
    Lin, Liang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (04) : 1725 - 1737