Adaptive Synchronization of Complex Dynamical Networks: Dealing With Uncertain Impulses

被引:8
作者
Zhu, Shuaibing [1 ]
Zhou, Jin [2 ]
Lu, Jinhu [3 ,4 ]
Lu, Jun-An [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Beihang Univ, Sch Automat Sci & Elect Engn, State Key Lab Software Dev Environm, Beijing 100083, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchronization; Adaptive control; Feedback control; Couplings; Complex networks; Uncertainty; Trajectory; Adaptive feedback control; complex network; impulse; linear feedback control; synchronization; PINNING CONTROL; IDENTIFICATION;
D O I
10.1109/TAC.2023.3342066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The synchronization problem of complex dynamical networks with impulsive effects has been extensively addressed. However, great challenges arise when applying the existing synchronization criteria to networks with uncertain impulses. In this article, we investigate the adaptive synchronization problem of complex networks with uncertain impulses. First, the adaptive control gain is proved to be bounded for both synchronizing and desynchronizing impulses. Then, adaptive synchronization criteria for impulsive networks are derived from the boundedness of the control gain. Finally, a numerical example is provided to validate the proposed criteria.
引用
收藏
页码:3997 / 4004
页数:8
相关论文
共 35 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
[Anonymous], 2018, Lett. B, V32
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]  
Bajnov D.D, 1989, Systems With Impulse Effect: Stability,Theory, and Applications
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]   Exponential cluster synchronization of hybrid-coupled impulsive delayed dynamical networks: average impulsive interval approach [J].
Cai, Shuiming ;
Li, Xiaojing ;
Jia, Qiang ;
Liu, Zengrong .
NONLINEAR DYNAMICS, 2016, 85 (04) :2405-2423
[7]  
Cao J., 2006, Chaos Interdiscipl. J. Nonlinear Sci, V16
[8]   The synchronized dynamics of time-varying networks [J].
Ghosh, Dibakar ;
Frasca, Mattia ;
Rizzo, Alessandro ;
Majhi, Soumen ;
Rakshit, Sarbendu ;
Alfaro-Bittner, Karin ;
Boccaletti, Stefano .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2022, 949 :1-63
[9]  
Hardy G.H., 1988, Inequalities
[10]   Adaptive-impulsive synchronization of uncertain complex dynamical networks [J].
Li, K. ;
Lai, C. H. .
PHYSICS LETTERS A, 2008, 372 (10) :1601-1606