Understanding the potentials of early-season crop type mapping by using Landsat-8, Sentinel-1/2, and GF-1/6 data

被引:3
作者
Wang, Cong [1 ]
Zhang, Xinyu [2 ]
Wang, Wenjing [1 ]
Wei, Haodong [2 ]
Wang, Jiayue [1 ]
Li, Zexuan [1 ]
Li, Xiuni [1 ]
Wu, Hao [1 ]
Hu, Qiong [1 ]
机构
[1] Cent China Normal Univ, Sch Urban & Environm Sci, Key Lab Geog Proc Anal & Simulat Hubei Prov, Wuhan 430079, Peoples R China
[2] Huazhong Agr Univ, Macro Agr Res Inst, Coll Plant Sci & Technol, Wuhan 430070, Peoples R China
关键词
Early identification; Crop mapping; GF-1/6; Sentinel-1/2; Landsat-8; LAND-COVER CLASSIFICATION; RANDOM FOREST; FEATURE-SELECTION; TIME-SERIES; AREA; SAR; COMPOSITES; IMAGES; PADDY;
D O I
10.1016/j.compag.2024.109239
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Early-season crop identification by remote sensing is challenging due to insufficient spectral and temporal information at early stage, especially when relying on single satellite data. Although multi-source datasets may offer additional useful information for classification, the specific significance of different satellite data and their combinations in early-season crop type mapping remains largely unclear. This study investigated the potential of integrating publicly available medium-and high-resolution image data (i.e., Landsat-8, Sentinel-1/2 and GF-1/6) on early-season crop type mapping, with Longjiang County in Heilongjiang Province, China serving as the study area. The results showed that among five single data sources, Sentinel-2 provided the earliest identification (F1score exceeded 0.9) of rice, followed by GF-1 and Sentinel-1. In terms of corn identification, GF-6 demonstrated the earliest identifiable capability, followed by GF-1 and Sentinel-2. Combining multi-source datasets proves to be more effective for early-season crop classification compared to using single-source datasets. Among all 12 scenarios, the integration of GF-1, GF-6, Sentinel-1, Sentinel-2, and Landsat-8 yielded the best performance in early-season crop identification, achieving accurate identification of rice at the transplanting stage (4 months ahead of harvest) and corn at the heading stage (2 months before harvest). Feature separability analysis further revealed that the crucial spectral/temporal features for specific crop types and image availability related to climate conditions were the main factors affecting early-season crop identification. This work can provide valuable insights for selecting various satellite datasets to facilitate early crop identification and enhances our understanding of the possibilities in early-season crop type mapping by leveraging medium- and high-resolution satellite data.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] MAPPING LAND COVER TIME SERIES USING LANDSAT-8 AND SENTINEL-1 IN SOUTH KALIMANTAN
    Sari, I. L.
    Weston, C. J.
    Newnham, G. J.
    Volkova, L.
    GEOINFORMATION WEEK 2022, VOL. 48-4, 2023, : 319 - 325
  • [12] High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data
    Li, Wang
    Niu, Zheng
    Shang, Rong
    Qin, Yuchu
    Wang, Li
    Chen, Hanyue
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 92
  • [13] Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error Quantification
    Poortinga, Ate
    Tenneson, Karis
    Shapiro, Aurelie
    Quyen Nquyen
    San Aung, Khun
    Chishtie, Farrukh
    Saah, David
    REMOTE SENSING, 2019, 11 (07)
  • [14] Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China
    Tian, Haifeng
    Wu, Mingquan
    Wang, Li
    Niu, Zheng
    SENSORS, 2018, 18 (01)
  • [15] High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data
    HAO Peng-yu
    TANG Hua-jun
    CHEN Zhong-xin
    YU Le
    WU Ming-quan
    JournalofIntegrativeAgriculture, 2019, 18 (12) : 2883 - 2897
  • [16] Data Reduction Using Statistical and Regression Approaches for Ice Velocity Derived by Landsat-8, Sentinel-1 and Sentinel-2
    Derkacheva, Anna
    Mouginot, Jeremie
    Millan, Romain
    Maier, Nathan
    Gillet-Chaulet, Fabien
    REMOTE SENSING, 2020, 12 (12)
  • [17] Synergy of Sentinel-1 and Sentinel-2 Imagery for Early Seasonal Agricultural Crop Mapping
    Valero, Silvia
    Arnaud, Ludovic
    Planells, Milena
    Ceschia, Eric
    REMOTE SENSING, 2021, 13 (23)
  • [18] Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2
    Torbick, Nathan
    Chowdhury, Diya
    Salas, William
    Qi, Jiaguo
    REMOTE SENSING, 2017, 9 (02)
  • [19] Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data
    Chakhar, Amal
    Ortega-Terol, Damian
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Ortega, Jose E.
    Moreno, Miguel A.
    REMOTE SENSING, 2020, 12 (11)
  • [20] Using Landsat-8 and Sentinel-1 Data for Above Ground Biomass Assessment in the Tamar Valley and Dartmoor
    Alboabidallah, Ahmed
    Martin, John
    Lavender, Samantha
    Abbott, Victor
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,