Machine Learning-Based Prediction of Large-for-Gestational-Age Infants in Mothers With Gestational Diabetes Mellitus

被引:2
作者
Kang, Mei [1 ,2 ]
Zhu, Chengguang [3 ]
Lai, Mengyu [4 ]
Weng, Jianrong [5 ]
Zhuang, Yan [5 ]
He, Huichen [1 ]
Qiu, Yan [1 ]
Wu, Yixia [1 ]
Qi, Zhangxuan [6 ]
Zhang, Weixia [3 ]
Xu, Xianming [5 ]
Zhu, Yanhong [1 ]
Wang, Yufan [4 ]
Yang, Xiaokang [3 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Clin Res Ctr, Sch Med, 100 Haining Rd, Shanghai 200080, Peoples R China
[2] Fudan Univ, Shanghai Inst Infect Dis & Biosecur, Sch Publ Hlth, Dept Epidemiol, Shanghai 200032, Peoples R China
[3] Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Med, Shanghai Gen Hosp, Dept Endocrinol & Metab, 100 Haining Rd, Shanghai 200080, Peoples R China
[5] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Obstet & Gynecol, Sch Med, 100 Haining Rd, Shanghai 200080, Peoples R China
[6] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Ctr Med Artificial Intelligence & Engn, Sch Med, Shanghai 200080, Peoples R China
关键词
gestational diabetes mellitus; continuous glucose monitoring; glycemic profile; large-for-gestational age; machine learning; prediction model; GLYCEMIC CONTROL; PREGNANCY; HYPERGLYCEMIA; OUTCOMES; OBESITY;
D O I
10.1210/clinem/dgae475
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Context Large-for-gestational-age (LGA), one of the most common complications of gestational diabetes mellitus (GDM), has become a global concern. The predictive performance of common continuous glucose monitoring (CGM) metrics for LGA is limited.Objective We aimed to develop and validate an artificial intelligence (AI)-based model to determine the probability of women with GDM giving birth to LGA infants during pregnancy using CGM measurements together with demographic data and metabolic indicators.Methods A total of 371 women with GDM from a prospective cohort at a university hospital were included. CGM was performed during 20 to 34 gestational weeks, and glycemic fluctuations were evaluated and visualized in women with GDM who gave birth to LGA and non-LGA infants. A convolutional neural network (CNN)-based fusion model was developed to predict LGA. Comparisons among the novel fusion model and 3 conventional models were made using the area under the receiver operating characteristic curve (AUCROC) and accuracy.Results Overall, 76 (20.5%) out of 371 GDM women developed LGA neonates. The visualized 24-hour glucose profiles differed at midmorning. This difference was consistent among subgroups categorized by pregestational body mass index, therapeutic protocol, and CGM administration period. The AI-based fusion prediction model using 24-hour CGM data and 15 clinical variables for LGA prediction (AUCROC 0.852; 95% CI, 0.680-0.966; accuracy 84.4%) showed superior discriminative power compared with the 3 classic models.Conclusion We demonstrated better performance in predicting LGA infants among women with GDM using the AI-based fusion model. The characteristics of the CGM profiles allowed us to determine the appropriate window for intervention.
引用
收藏
页码:e1631 / e1639
页数:9
相关论文
共 41 条
[1]   Continuous glucose monitoring in individuals undergoing gestational diabetes screening [J].
Bartal, Michal Fishel ;
Cornthwaite, Joycelyn Ashby ;
Ghafir, Danna ;
Ward, Clara ;
Nazeer, Sarah A. ;
Blackwell, Sean C. ;
Pedroza, Claudia ;
Chauhan, Suneet P. ;
Sibai, Baha M. .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2023, 229 (04)
[2]   Continuous Glucose Monitoring and Time in Range: Association with Adverse Outcomes among People with Type 2 or Gestational Diabetes Mellitus [J].
Bitar, Ghamar ;
Cornthwaite, Joycelyn A. ;
Sadek, Sandra ;
Ghorayeb, Tala ;
Daye, Nahla ;
Nazeer, Sarah ;
Ghafir, Danna ;
Cornthwaite, John ;
Chauhan, Suneet P. ;
Sibai, Baha M. ;
Bartal, Michal Fishel .
AMERICAN JOURNAL OF PERINATOLOGY, 2024, 41 :e1370-e1377
[3]   The Relative Contribution of Prepregnancy Overweight and Obesity, Gestational Weight Gain, and IADPSG-Defined Gestational Diabetes Mellitus to Fetal Overgrowth [J].
Black, Mary Helen ;
Sacks, David A. ;
Xiang, Anny H. ;
Lawrence, Jean M. .
DIABETES CARE, 2013, 36 (01) :56-62
[4]  
BOLLI GB, 1984, DIABETES, V33, P1150, DOI 10.2337/diabetes.33.12.1150
[5]   Development, validation and clinical utility of a risk prediction model for adverse pregnancy outcomes in women with gestational diabetes: The PeRSonal GDM model [J].
Cooray, Shamil D. ;
Boyle, Jacqueline A. ;
Soldatos, Georgia ;
Allotey, John ;
Wang, Holly ;
Fernandez-Felix, Borja M. ;
Zamora, Javier ;
Thangaratinam, Shakila ;
Teede, Helena J. .
ECLINICALMEDICINE, 2022, 52
[6]   Insulin during pregnancy, labour and delivery [J].
de Valk, Harold W. ;
Visser, Gerard H. A. .
BEST PRACTICE & RESEARCH CLINICAL OBSTETRICS & GYNAECOLOGY, 2011, 25 (01) :65-76
[7]   Developmental Origins of Obesity: Programmed Adipogenesis [J].
Desai, Mina ;
Beall, Marie ;
Ross, Michael G. .
CURRENT DIABETES REPORTS, 2013, 13 (01) :27-33
[8]   7. Diabetes Technology: Standards of Care in Diabetes-2024 [J].
ElSayed, Nuha A. ;
Aleppo, Grazia ;
Bannuru, Raveendhara R. ;
Bruemmer, Dennis ;
Collins, Billy S. ;
Ekhlaspour, Laya ;
Hilliard, Marisa E. ;
Johnson, Eric L. ;
Lingvay, Ildiko ;
Khunti, Kamlesh ;
Matfin, Glenn ;
McCoy, Rozalina G. ;
Perry, Mary Lou ;
Pilla, Scott J. ;
Polsky, Sarit ;
Prahalad, Priya ;
Pratley, Richard E. ;
Segal, Alissa R. ;
Seley, Jane Jeffrie ;
Stanton, Robert C. ;
Gabbay, Robert A. ;
Beverly, Elizabeth A. ;
Cusi, Kenneth ;
Darville, Audrey ;
Das, Sandeep R. ;
Fleming, Talya K. ;
Gaglia, Jason L. ;
Galindo, Rodolfo J. ;
Gibbons, Christopher H. ;
Giurini, John M. ;
Hassanein, Mohamed ;
Kosiborod, Mikhail N. ;
Kushner, Robert F. ;
Murdock, Lisa ;
Napoli, Nicola ;
Selvin, Elizabeth ;
Silva, Paolo S. ;
Verduzco-Gutierrez, Monica ;
Woodward, Crystal C. ;
Younossi, Zobair M. ;
Pekas, Elizabeth J. ;
Yacoubian, Alexandra M. .
DIABETES CARE, 2024, 47 :S126-S144
[9]   Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2023 [J].
ElSayed, Nuha A. ;
Aleppo, Grazia ;
Aroda, Vanita R. ;
Bannuru, Raveendhara R. ;
Brown, Florence M. ;
Bruemmer, Dennis ;
Collins, Billy S. ;
Hilliard, Marisa E. ;
Isaacs, Diana ;
Johnson, Eric L. ;
Kahan, Scott ;
Khunti, Kamlesh ;
Leon, Jose ;
Lyons, Sarah K. ;
Perry, Mary Lou ;
Prahalad, Priya ;
Pratley, Richard E. ;
Seley, Jane Jeffrie ;
Stanton, Robert C. ;
Gabbay, Robert A. .
DIABETES CARE, 2023, 46 :S254-S266
[10]   Comparison of Accuracy of Freestyle Libre Pro and Medtronic iPro2 Continuous Glucose Monitoring Systems in Pregnancy [J].
Golla, Kiran Kumar ;
Gupta, Yashdeep ;
Goyal, Alpesh ;
Kalaivani, Mani ;
Kachhawa, Garima ;
Kulshrestha, Vidushi ;
Sharma, Aparna. K. K. ;
Meena, Jyoti ;
Bharti, Juhi ;
Sharma, Jai. B. B. ;
Dadhwal, Vatsla ;
Malhotra, Neena ;
Bhatla, Neerja ;
Tandon, Nikhil .
DIABETES TECHNOLOGY & THERAPEUTICS, 2023, 25 (08) :538-542