Electric field-effect thermal transistors and logic gates

被引:1
作者
Xu, Deyu [1 ]
Zhao, Junming [1 ,2 ]
Liu, Linhua [3 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Aerosp Thermophys, Harbin 150001, Peoples R China
[3] Shandong Univ, Sch Energy & Power Engn, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal transistor; Near -field radiative heat transfer; Field-effect transistor; Semiconductor; HEAT-TRANSFER; TRANSITION; RADIATION;
D O I
10.1016/j.ijheatmasstransfer.2024.125557
中图分类号
O414.1 [热力学];
学科分类号
摘要
A prototype of electric field-effect thermal transistor (EFETT) and the derived thermal logic gates are proposed, using electric potentials as inputs and temperature as outputs. The EFETT works on the modulation of near-field thermal photons transferred between the source and the drain semiconductors by the electric field-effect induced by gate voltage, thus altering the heat current and terminal temperature. It is demonstrated that arbitrary thermal logic gates can be built based on the EFETT conveniently. The characteristics of the EFETTs and the realized thermal logic gates are analyzed quantitatively. The proposed prototype opens a new avenue for the design of thermal transistors and thermal circuits which may motivate their applications for thermal information processing and thermal management.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Advances in organic field-effect transistors and integrated circuits [J].
Wang Hong ;
Ji ZhuoYu ;
Liu Ming ;
Shang LiWei ;
Liu Ge ;
Liu XingHua ;
Liu Jiang ;
Peng YingQuan .
SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2009, 52 (11) :3105-3116
[42]   A review for compact model of graphene field-effect transistors [J].
卢年端 ;
汪令飞 ;
李泠 ;
刘明 .
Chinese Physics B, 2017, 26 (03) :100-117
[43]   Terahertz response of field-effect transistors in saturation regime [J].
Elkhatib, T. A. ;
Kachorovskii, V. Yu. ;
Stillman, W. J. ;
Rumyantsev, S. ;
Zhang, X. -C. ;
Shur, M. S. .
APPLIED PHYSICS LETTERS, 2011, 98 (24)
[44]   Ambipolar field-effect transistors based on fullerene peapods [J].
Guo, A ;
Fu, YY ;
Guan, LH ;
Wang, XF ;
Shi, ZJ ;
Gu, ZN ;
Zhang, X .
2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, :644-647
[45]   Monolayer Solid-State Electrolyte for Electric Double Layer Gating of Graphene Field-Effect Transistors [J].
Xu, Ke ;
Lu, Hao ;
Kinder, Erich W. ;
Seabaugh, Alan ;
Fullerton-Shirey, Susan K. .
ACS NANO, 2017, 11 (06) :5453-5464
[46]   Magnetic-field enhancement of the current instability in field-effect transistors [J].
Vasilopoulos, P ;
Kushwaha, MS .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4) :482-486
[47]   Room Temperature Terahertz Plasmonic Detection by Antenna Arrays of Field-Effect Transistors [J].
Popov, V. V. ;
Pala, N. ;
Shur, M. S. .
NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (10) :1015-1022
[48]   Frequency Response of SWCNT Field-Effect Transistors with MWCNT Interconnects [J].
Zhu Yu-Zhen ;
Wang Sheng ;
Wei Xian-Long ;
Ding Li ;
Zhang Zhi-Yong ;
Liang Xue-Lei ;
Chen Qing ;
Peng Lian-Mao .
ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (11) :2122-2127
[49]   A novel method to reduce heat in semiconductor field-effect transistors [J].
Zhenxing Cai ;
Hongna Pan .
Multiscale and Multidisciplinary Modeling, Experiments and Design, 2024, 7 :1425-1435
[50]   Imaging Ultrafast Carrier Transport in Nanoscale Field-Effect Transistors [J].
Son, Byung Hee ;
Park, Jae-Ku ;
Hong, Jung Taek ;
Park, Ji-Yong ;
Lee, Soonil ;
Ahn, Yeong Hwan .
ACS NANO, 2014, 8 (11) :11361-11368