Electric field-effect thermal transistors and logic gates

被引:0
作者
Xu, Deyu [1 ]
Zhao, Junming [1 ,2 ]
Liu, Linhua [3 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Aerosp Thermophys, Harbin 150001, Peoples R China
[3] Shandong Univ, Sch Energy & Power Engn, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal transistor; Near -field radiative heat transfer; Field-effect transistor; Semiconductor; HEAT-TRANSFER; TRANSITION; RADIATION;
D O I
10.1016/j.ijheatmasstransfer.2024.125557
中图分类号
O414.1 [热力学];
学科分类号
摘要
A prototype of electric field-effect thermal transistor (EFETT) and the derived thermal logic gates are proposed, using electric potentials as inputs and temperature as outputs. The EFETT works on the modulation of near-field thermal photons transferred between the source and the drain semiconductors by the electric field-effect induced by gate voltage, thus altering the heat current and terminal temperature. It is demonstrated that arbitrary thermal logic gates can be built based on the EFETT conveniently. The characteristics of the EFETTs and the realized thermal logic gates are analyzed quantitatively. The proposed prototype opens a new avenue for the design of thermal transistors and thermal circuits which may motivate their applications for thermal information processing and thermal management.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Graphene field-effect transistors: the road to bioelectronics
    Donnelly, Matthew
    Mao, Dacheng
    Park, Junsu
    Xu, Guangyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)
  • [22] Ultrathin CdSe nanowire field-effect transistors
    Khandelwal, A
    Jena, D
    Grebinski, JW
    Hull, KL
    Kuno, MK
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (01) : 170 - 172
  • [23] Ultrathin CdSe nanowire field-effect transistors
    Anubhav Khandelwal
    Debdeep Jena
    James W. Grebinski
    Katherine Leigh Hull
    Masaru K. Kuno
    Journal of Electronic Materials, 2006, 35 : 170 - 172
  • [24] The progress of flexible organic field-effect transistors
    Dong Jing
    Chai Yu-Hua
    Zhao Yue-Zhi
    Shi Wei-Wei
    Guo Yu-Xiu
    Yi Ming-Dong
    Xie Ling-Hai
    Huang Wei
    ACTA PHYSICA SINICA, 2013, 62 (04)
  • [25] Microwave performance of diamond field-effect transistors
    Taniuchi, H
    Umezawa, H
    Ishizaka, H
    Kawarada, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (4B): : 2591 - 2594
  • [26] On the intrinsic limits of pentacene field-effect transistors
    Schoen, J. H.
    Kloc, Ch.
    Batlogg, B.
    ORGANIC ELECTRONICS, 2000, 1 (01) : 57 - 64
  • [27] Modeling of Electrolyte Thermal Noise in Electrolyte-Oxide-Semiconductor Field-Effect Transistors
    Park, Chan Hyeong
    Chung, In-Young
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2016, 16 (01) : 106 - 111
  • [28] Carbon Nanotube Field Effect Transistors with Suspended Graphene Gates
    Svensson, Johannes
    Lindahl, Niklas
    Yun, Hoyeol
    Seo, Miri
    Midtvedt, Daniel
    Tarakanov, Yury
    Lindvall, Niclas
    Nerushev, Oleg
    Kinaret, Jari
    Lee, SangWook
    Campbell, Eleanor E. B.
    NANO LETTERS, 2011, 11 (09) : 3569 - 3575
  • [29] Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors
    Pradhan, N. R.
    Rhodes, D.
    Memaran, S.
    Poumirol, J. M.
    Smirnov, D.
    Talapatra, S.
    Feng, S.
    Perea-Lopez, N.
    Elias, A. L.
    Terrones, M.
    Ajayan, P. M.
    Balicas, L.
    SCIENTIFIC REPORTS, 2015, 5
  • [30] Electric Double-Layer Gating of Two-Dimensional Field-Effect Transistors Using a Single-Ion Conductor
    Xu, Ke
    Liang, Jierui
    Woeppel, Aaron
    Bostian, M. Eli
    Ding, Hangjun
    Chao, Zhongmou
    McKone, James R.
    Beckman, Eric J.
    Fullerton-Shirey, Susan K.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (39) : 35879 - 35887