Gated cardiac CT in infants: What can we expect from deep learning image reconstruction algorithm?

被引:0
作者
Gulizia, Marianna [1 ]
Alamo, Leonor [1 ]
Aleman-Gomez, Yasser [1 ]
Cherpillod, Tyna [1 ]
Mandralis, Katerina [1 ]
Chevallier, Christine [1 ]
Tenisch, Estelle [1 ]
Viry, Anais [2 ,3 ]
机构
[1] Lausanne Univ Hosp CHUV, Dept Diagnost & Intervent Radiol, Rue Bugnon 46, CH-1011 Lausanne, Switzerland
[2] Lausanne Univ Hosp CHUV, Inst Radiat Phys, Rue Grand Pre 1, CH-1007 Lausanne, Switzerland
[3] Univ Lausanne UNIL, Rue Grand Pre 1, CH-1007 Lausanne, Switzerland
关键词
CT; Pediatric; Congenital heart disease; DLIR; Phantom; Optimization; ITERATIVE RECONSTRUCTION; DOSE REDUCTION; ABDOMINAL CT; ANGIOGRAPHY; CHEST;
D O I
10.1016/j.jcct.2024.03.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: ECG -gated cardiac CT is now widely used in infants with congenital heart disease (CHD). Deep Learning Image Reconstruction (DLIR) could improve image quality while minimizing the radiation dose. Objectives: To de fine the potential dose reduction using DLIR with an anthropomorphic phantom. Method: An anthropomorphic pediatric phantom was scanned with an ECG -gated cardiac CT at four dose levels. Images were reconstructed with an iterative and a deep -learning reconstruction algorithm (ASIR-V and DLIR). Detectability of high -contrast vessels were computed using a mathematical observer. Discrimination between two vessels was assessed by measuring the CT spatial resolution. The potential dose reduction while keeping a similar level of image quality was assessed. Results: DLIR-H enhances detectability by 2.4% and discrimination performances by 20.9% in comparison with ASIR-V 50. To maintain a similar level of detection, the dose could be reduced by 64% using high -strength DLIR in comparison with ASIR-V50. Conclusion: DLIR offers the potential for a substantial dose reduction while preserving image quality compared to ASIR-V.
引用
收藏
页码:304 / 306
页数:3
相关论文
共 16 条
[1]   Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography [J].
Benz, Dominik C. ;
Ersoezlue, Sara ;
Mojon, Francois L. A. ;
Messerli, Michael ;
Mitulla, Anna K. ;
Ciancone, Domenico ;
Kenkel, David ;
Schaab, Jan A. ;
Gebhard, Catherine ;
Pazhenkottil, Aju P. ;
Kaufmann, Philipp A. ;
Buechel, Ronny R. .
EUROPEAN RADIOLOGY, 2022, 32 (04) :2620-2628
[2]   Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy [J].
Benz, Dominik C. ;
Benetos, Georgios ;
Rampidis, Georgios ;
von Felten, Elia ;
Bakula, Adam ;
Sustar, Aleksandra ;
Kudura, Ken ;
Messerli, Michael ;
Fuchs, Tobias A. ;
Gebhard, Catherine ;
Pazhenkottil, Aju P. ;
Kaufmann, Philipp A. ;
Buechel, Ronny R. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2020, 14 (05) :444-451
[3]   Low-dose prospective ECG-triggering dual-source CT angiography in infants and children with complex congenital heart disease: first experience [J].
Cheng, Zhaoping ;
Wang, Ximing ;
Duan, Yanhua ;
Wu, Lebin ;
Wu, Dawei ;
Chao, Baoting ;
Liu, Cheng ;
Xu, Zhuodong ;
Li, Hongxin ;
Liang, Fei ;
Xu, Jian ;
Chen, Jiuhong .
EUROPEAN RADIOLOGY, 2010, 20 (10) :2503-2511
[4]   Pediatric Cardiac CT and MRI: Considerations for the General Radiologist [J].
DiGeorge, Nicholas W. ;
El-Ali, Alexander M. ;
White, Ammie M. ;
Harris, Matthew A. ;
Biko, David M. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (06) :1464-1473
[5]   A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential [J].
Euler, Andre ;
Solomon, Justin ;
Marin, Daniele ;
Nelson, Rendon C. ;
Samei, Ehsan .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (06) :1301-1308
[6]   Effects of scintillator on the modulation transfer function (MTF) of a digital imaging system [J].
Farman, TT ;
Vandre, RH ;
Pajak, JC ;
Miller, SR ;
Lempicki, A ;
Farman, AG .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY AND ENDODONTOLOGY, 2005, 99 (05) :608-613
[7]   Task-based detectability in CT image reconstruction by filtered backprojection and penalized likelihood estimation [J].
Gang, Grace J. ;
Stayman, J. Webster ;
Zbijewski, Wojciech ;
Siewerdsen, Jeffrey H. .
MEDICAL PHYSICS, 2014, 41 (08) :260-278
[8]  
Hsieh J, 2020, A new era of image reconstruction: TrueFidelity-technical white paper on deep learning image reconstruction, P2
[9]  
International Commission on Radiation Units and Measurements, 2012, J ICRU, V12, P1, DOI [10.1093/jicru/ndt007, 10.1093/jicru/ndv019]
[10]   Cardiac CTA image quality of adaptive statistical iterative reconstruction-V versus deep learning reconstruction "TrueFidelity" in children with congenital heart disease [J].
Kim, Kun Hee ;
Choo, Ki Seok ;
Nam, Kyoung Jin ;
Lee, Kyeyoung ;
Hwang, Jae-Yeon ;
Park, ChanKue ;
Yang, Woo Jung .
MEDICINE, 2022, 101 (42) :E31169