Current Advancements in Anti-Cancer Chimeric Antigen Receptor T Cell Immunotherapy and How Nanotechnology May Change the Game

被引:6
作者
Ku, Kimberly S. [1 ]
Tang, Jie [1 ]
Chen, Yuan [2 ]
Shi, Yihui [1 ,3 ]
机构
[1] Calif Northstate Univ, Coll Med, Elk Grove, CA 95757 USA
[2] Jena Univ Hosp, Friedrich Schiller Univ Jena, Inst Forens Med, Sect Pathol, Klinikum 1, D-07747 Jena, Germany
[3] Sutter Bay Hosp, Calif Pacific Med Ctr Res Inst, San Francisco, CA 94107 USA
关键词
immunotherapy; nanomedicine; cancer; CAR-T; GOLD NANOPARTICLES; BIODISTRIBUTION; CHALLENGES; THERAPY; LIVER; LEUKEMIA; DOMAIN;
D O I
10.3390/ijms25105361
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chimeric antigen receptor (CAR)-T cell immunotherapy represents a cutting-edge advancement in the landscape of cancer treatment. This innovative therapy has shown exceptional promise in targeting and eradicating malignant tumors, specifically leukemias and lymphomas. However, despite its groundbreaking successes, (CAR)-T cell therapy is not without its challenges. These challenges, particularly pronounced in the treatment of solid tumors, include but are not limited to, the selection of appropriate tumor antigens, managing therapy-related toxicity, overcoming T-cell exhaustion, and addressing the substantial financial costs associated with treatment. Nanomedicine, an interdisciplinary field that merges nanotechnology with medical science, offers novel strategies that could potentially address these limitations. Its application in cancer treatment has already led to significant advancements, including improved specificity in drug targeting, advancements in cancer diagnostics, enhanced imaging techniques, and strategies for long-term cancer prevention. The integration of nanomedicine with (CAR)-T cell therapy could revolutionize the treatment landscape by enhancing the delivery of genes in (CAR)-T cell engineering, reducing systemic toxicity, and alleviating the immunosuppressive effects within the tumor microenvironment. This review aims to explore how far (CAR)-T cell immunotherapy has come alone, and how nanomedicine could strengthen it into the future. Additionally, the review will examine strategies to limit the off-target effects and systemic toxicity associated with (CAR)-T cell therapy, potentially enhancing patient tolerance and treatment outcomes.
引用
收藏
页数:17
相关论文
共 113 条
[1]   Immunogenicity Risk Profile of Nanobodies [J].
Ackaert, Chloe ;
Smiejkowska, Natalia ;
Xavier, Catarina ;
Sterckx, Yann G. J. ;
Denies, Sofie ;
Stijlemans, Benoit ;
Elkrim, Yvon ;
Devoogdt, Nick ;
Caveliers, Vicky ;
Lahoutte, Tony ;
Muyldermans, Serge ;
Breckpot, Karine ;
Keyaerts, Marleen .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[2]   HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma A Phase 1 Dose-Escalation Trial [J].
Ahmed, Nabil ;
Brawley, Vita ;
Hegde, Meenakshi ;
Bielamowicz, Kevin ;
Kalra, Mamta ;
Landi, Daniel ;
Robertson, Catherine ;
Gray, Tara L. ;
Diouf, Oumar ;
Wakefield, Amanda ;
Ghazi, Alexia ;
Gerken, Claudia ;
Yi, Zhongzhen ;
Ashoori, Aidin ;
Wu, Meng-Fen ;
Liu, Hao ;
Rooney, Cliona ;
Dotti, Gianpietro ;
Gee, Adrian ;
Su, Jack ;
Kew, Yvonne ;
Baskin, David ;
Zhang, Yi Jonathan ;
New, Pamela ;
Grilley, Bambi ;
Stojakovic, Milica ;
Hicks, John ;
Powell, Suzanne Z. ;
Brenner, Malcolm K. ;
Heslop, Helen E. ;
Grossman, Robert ;
Wels, Winfried S. ;
Gottschalk, Stephen .
JAMA ONCOLOGY, 2017, 3 (08) :1094-1101
[3]   Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains [J].
Alabanza, Leah ;
Pegues, Melissa ;
Geldres, Claudia ;
Shi, Victoria ;
Wiltzius, Jed J. W. ;
Sievers, Stuart A. ;
Yang, Shicheng ;
Kochenderfer, James N. .
MOLECULAR THERAPY, 2017, 25 (11) :2452-2465
[4]  
[Anonymous], 2022, BREYANZI (lisocabtagene maraleucel) Package insert
[5]  
[Anonymous], 2022, FDA approves ciltacabtagene autoleucel for relapsed or refractory multiple myeloma
[6]   Hyaluronic acid based low viscosity hydrogel as a novel carrier for Convection Enhanced Delivery of CAR T cells [J].
Atik, Ahmet F. ;
Suryadevara, Carter M. ;
Schweller, Ryan M. ;
West, Jennifer L. ;
Healy, Patrick ;
Herndon, James E., II ;
Congdon, Kendra L. ;
Sanchez-Perez, Luis ;
McLendon, Roger E. ;
Archer, Gerald E. ;
Fecci, Peter ;
Sampson, John H. .
JOURNAL OF CLINICAL NEUROSCIENCE, 2018, 56 :163-168
[7]   Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats [J].
Balasubramanian, Suresh K. ;
Jittiwat, Jinattal ;
Manikandan, Jayapal ;
Ong, Choon-Nam ;
Yu, Liya E. ;
Ong, Wei-Yi .
BIOMATERIALS, 2010, 31 (08) :2034-2042
[8]   Regulating Nanomedicine - Can the FDA Handle It? [J].
Bawa, Raj .
CURRENT DRUG DELIVERY, 2011, 8 (03) :227-234
[9]   Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies [J].
Beatty, Gregory L. ;
Haas, Andrew R. ;
Maus, Marcela V. ;
Torigian, Drew A. ;
Soulen, Michael C. ;
Plesa, Gabriela ;
Chew, Anne ;
Zhao, Yangbing ;
Levine, Bruce L. ;
Albelda, Steven M. ;
Kalos, Michael ;
June, Carl H. .
CANCER IMMUNOLOGY RESEARCH, 2014, 2 (02) :112-120
[10]   A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells [J].
Bozza, Matthias ;
De Roia, Alice ;
Correia, Margareta P. ;
Berger, Aileen ;
Tuch, Alexandra ;
Schmidt, Andreas ;
Zornig, Inka ;
Jager, Dirk ;
Schmidt, Patrick ;
Harbottle, Richard P. .
SCIENCE ADVANCES, 2021, 7 (16)