Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions

被引:1
作者
Jia, Zeya [1 ]
Lupas, Alina Alb [2 ]
Bin Jebreen, Haifa [3 ]
Oros, Georgia Irina [2 ]
Bulboaca, Teodor [4 ]
Ahmad, Qazi Zahoor [5 ]
机构
[1] Huanghuai Univ, Zhumadian Acad Ind Innovat & Dev, Sch Math & Stat, Zhumadian 463000, Peoples R China
[2] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
[3] King Saud Univ, Coll Sci, Dept Math, POB 22452, Riyadh 11495, Saudi Arabia
[4] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[5] Govt Akhtar Nawaz Khan Shaheed Degree Coll KTS, Haripur 22620, Pakistan
关键词
convex functions; starlike functions; close-to-convex functions; bi-close-to-convex functions; fractional q-differintegral operator; Q-STARLIKE FUNCTIONS; ANALYTIC-FUNCTIONS; UNIVALENT FUNCTIONS; COMPREHENSIVE SUBCLASS; COEFFICIENT PROBLEM;
D O I
10.3390/math12132026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we first consider the fractional q-differential operator and the lambda,q-fractional differintegral operator Dq lambda:A -> A. Using the lambda,q-fractional differintegral operator, we define two new subclasses of analytic functions: the subclass S*q,beta,lambda of starlike functions of order beta and the class C Sigma lambda,q alpha of bi-close-to-convex functions of order beta. We explore the results on coefficient inequality and Fekete-Szeg & ouml; problems for functions belonging to the class S*q,beta,lambda. Using the Faber polynomial technique, we derive upper bounds for the nth coefficient of functions in the class of bi-close-to-convex functions of order beta. We also investigate the erratic behavior of the initial coefficients in the class C Sigma lambda,q alpha of bi-close-to-convex functions. Furthermore, we address some known problems to demonstrate the connection between our new work and existing research.
引用
收藏
页数:19
相关论文
共 45 条
[1]  
Abelman S, 2017, FACTA UNIV-SER MATH, V32, P255, DOI 10.22190/FUMI1702255A
[2]   Differential calculus on the Faber polynomials [J].
Airault, H ;
Bouali, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :179-222
[3]  
Airault H., 2007, Conference, Groups and Symmetries
[4]   Some Subordination Results on q-Analogue of Ruscheweyh Differential Operator [J].
Aldweby, Huda ;
Darus, Maslina .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[5]   q-Fractional Calculus and Equations Preface [J].
Ismail, Mourad .
Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 :IX-+
[6]  
Bao G., 2001, J. Inequalities Pure Appl. Math, V2, P23
[7]  
Brannan D. A., 1979, Proceedings of the NATO Advanced Study Institute Held at University of Durhary New York
[8]  
Brannan D. A., 1986, Studia Univ. Babes-Bolyai Math., V31, P70, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[9]  
Bulut S., 2017, J. Frac. Calc. Appl, V8, P108
[10]   COEFFICIENT ESTIMATES FOR FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN [J].
Bulut, Serap .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02) :537-549