From biomass-derived fructose to γ-valerolactone: Process design and techno-economic assessment

被引:5
作者
di Bucchianico, Daniele di Menno [1 ,2 ]
Scarponi, Giordano Emrys [2 ]
Buvat, Jean-Christophe [1 ]
Leveneur, Sebastien [1 ]
Moreno, Valeria Casson [3 ]
机构
[1] Normandie Univ, INSA Rouen, Lab Secur Procedes Chim LSPC, FR-76000 Rouen, France
[2] Univ Bologna, Dept Civil Chem Environm & Mat Engn, Via Terracini 28, I-40131 Bologna, Italy
[3] Univ Pisa, Dept Civil & Ind Engn, Largo Lucio Lazzarino 1, I-56126 Pisa, Italy
关键词
Gamma valerolactone; Fructose; Process design; Techno-economic assessment; Sensitivity analysis; LEVULINIC ACID; CONVERSION; BIOREFINERY; GLUCOSE;
D O I
10.1016/j.biortech.2024.130753
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This work proposes a process design and techno-economic assessment for the production of gamma -valerolactone from lignocellulosic derived fructose at industrial scale, with the aim of exploring its feasibility, identifying potential obstacles, and suggesting improvements in the context of France. First, the conceptual process design is developed, the process modelled and optimized. Second, different potential scenarios for the energy supply to the process are analyzed by means of a set of economic key performance indicators, aimed at highlighting the best potential profitability scenario for the sustainable exploitation of waste biomass in the context analyzed. The lowest Minimum Selling Price for GVL is obtained at 10 kt/y plant fueled by biomass, i.e. 1.89 <euro>/kg, along with the highest end -of -live revenue, i.e. 113 M <euro>. Finally, a sensitivity and uncertainties analysis, based on Monte Carlo simulations, are carried out on the results in order to test their robustness with respect to key input parameters.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Large-scale stationary hydrogen storage via liquid organic hydrogen carriers [J].
Abdin, Zainul ;
Tang, Chunguang ;
Liu, Yun ;
Catchpole, Kylie .
ISCIENCE, 2021, 24 (09)
[2]   A critical review on suitability and catalytic production of butyl levulinate as a blending molecule for green diesel [J].
Ahmad, Khwaja Alamgir ;
Siddiqui, Mohammad Haider ;
Pant, Kamal K. ;
Nigam, K. D. P. ;
Shetti, Nagaraj P. ;
Aminabhavi, Tejraj M. ;
Ahmad, Ejaz .
CHEMICAL ENGINEERING JOURNAL, 2022, 447
[3]   Efficient one-pot synthesis of n-butyl levulinate from carbohydrates catalyzed by Fe2(SO4)3 [J].
An, Ran ;
Xu, Guizhuan ;
Chang, Chun ;
Bai, Jing ;
Fang, Shuqi .
JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (03) :556-563
[4]   Simulation studies of refrigeration cycles: A review [J].
Anand, S. ;
Gupta, A. ;
Tyagi, S. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 17 :260-277
[5]  
[Anonymous], 2021, NET ZERO 2050 ROADMA
[6]   Physicochemical Properties for the Reaction Systems: Levulinic Acid, Its Esters, and γ-Valerolactone [J].
Ariba, Houda ;
Wang, Yanjun ;
Devouge-Boyer, Christine ;
Stateva, Roumiana P. ;
Leveneur, Sebastien .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2020, 65 (06) :3008-3020
[7]   Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review [J].
Ashokkumar, Veeramuthu ;
Venkatkarthick, Radhakrishnan ;
Jayashree, Shanmugam ;
Chuetor, Santi ;
Dharmaraj, Selvakumar ;
Kumar, Gopalakrishnan ;
Chen, Wei-Hsin ;
Ngamcharussrivichai, Chawalit .
BIORESOURCE TECHNOLOGY, 2022, 344
[8]   Estimating Precommercial Heterogeneous Catalyst Price: A Simple Step-Based Method [J].
Baddour, Frederick G. ;
Snowden-Swan, Lesley ;
Super, John D. ;
Van Allsburg, Kurt M. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2018, 22 (12) :1599-1605
[9]   Techno-Economic Analysis of Cellulosic Butanol Production from Corn Stover through Acetone-Butanol-Ethanol Fermentation [J].
Baral, Nawa Raj ;
Shah, Ajay .
ENERGY & FUELS, 2016, 30 (07) :5779-5790
[10]  
Biomasse Normandie Region Normandie ADEME, 2020, Observatoire des dechets de Normandie - Les dechets menagers et assimiles en Normandie - Annee 2018