Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net

被引:1
作者
You, Sungmin [1 ,2 ]
Barba, Anette De Leon [1 ]
Tamayo, Valeria Cruz [1 ]
Yun, Hyuk Jin [1 ,2 ,3 ]
Yang, Edward [4 ]
Grant, P. Ellen [1 ,2 ,4 ]
Im, Kiho [1 ,2 ,3 ]
机构
[1] Harvard Med Sch, Boston Childrens Hosp, Fetal Neonatal Neuroimaging & Dev Sci Ctr, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston Childrens Hosp, Div Newborn Med, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[4] Harvard Med Sch, Boston Childrens Hosp, Dept Radiol, Boston, MA 02115 USA
关键词
fetal MRI; brain MRI; cortical surface parcellation; deep learning; spherical U-net; attention mechanism; PATTERNS; REGIONS; GROWTH; MRI;
D O I
10.3389/fnins.2024.1410936
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 +/- 3.3 (mean +/- SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 +/- 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 +/- 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 +/- 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.
引用
收藏
页数:12
相关论文
共 59 条
  • [1] Complex Trajectories of Brain Development in the Healthy Human Fetus
    Andescavage, Nickie N.
    du Plessis, Adre
    McCarter, Robert
    Serag, Ahmed
    Evangelou, Iordanis
    Vezina, Gilbert
    Robertson, Richard
    Limperopoulos, Catherine
    [J]. CEREBRAL CORTEX, 2017, 27 (11) : 5274 - 5283
  • [2] MarsAtlas: A cortical parcellation atlas for functional mapping
    Auzias, Guillaume
    Coulon, Olivier
    Brovelli, Andrea
    [J]. HUMAN BRAIN MAPPING, 2016, 37 (04) : 1573 - 1592
  • [3] Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473]
  • [4] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [5] Barycentric Lagrange interpolation
    Berrut, JP
    Trefethen, LN
    [J]. SIAM REVIEW, 2004, 46 (03) : 501 - 517
  • [6] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [7] Cortical surface registration using unsupervised learning
    Cheng, Jieyu
    Dalca, Adrian, V
    Fischl, Bruce
    Zollei, Lilla
    [J]. NEUROIMAGE, 2020, 221
  • [8] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [9] An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
    Desikan, Rahul S.
    Segonne, Florent
    Fischl, Bruce
    Quinn, Brian T.
    Dickerson, Bradford C.
    Blacker, Deborah
    Buckner, Randy L.
    Dale, Anders M.
    Maguire, R. Paul
    Hyman, Bradley T.
    Albert, Marilyn S.
    Killiany, Ronald J.
    [J]. NEUROIMAGE, 2006, 31 (03) : 968 - 980
  • [10] Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
    Destrieux, Christophe
    Fischl, Bruce
    Dale, Anders
    Halgren, Eric
    [J]. NEUROIMAGE, 2010, 53 (01) : 1 - 15