Nonuniqueness for fractional parabolic equations with sublinear power-type nonlinearity

被引:1
作者
Benedikt, Jiri [1 ,2 ]
Bobkov, Vladimir [3 ,4 ]
Dhara, Raj Narayan [5 ,6 ]
Girg, Petr [1 ,2 ]
机构
[1] Univ West Bohemia, Dept Math, Univ 8, Plzen 30100, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, NTIS, Univ 8, Plzen 30100, Czech Republic
[3] RAS, Inst Math, Ufa Fed Res Ctr, Chernyshevsky Str 112, Ufa 450008, Russia
[4] Ufa Univ Sci & Technol, Zaki Validi str 32, Ufa 450076, Russia
[5] Palacky Univ, Fac Sci, Dept Math Anal & Applicat Math, 17 Listopadu 12, Olomouc 77146, Czech Republic
[6] Polish Acad Sci, Syst Res Inst, Newelska 6, PL-01447 Warsaw, Poland
关键词
Fractional Laplacian; Initial-boundary value problem; Non-Lipschitz reaction term; Nonuniqueness; UNIQUENESS;
D O I
10.1016/j.jmaa.2024.128634
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the parabolic equation u t + ( - Delta) s u = q ( x ) | u | alpha - 1 u posed in a timespace cylinder (0, T ) x R N and coupled with zero initial condition and zero nonlocal Dirichlet condition in (0, T ) x ( R N \ 12), where 12 is a bounded domain, has at least one nontrivial nonnegative finite energy solution provided alpha is an element of (0, 1) and the nonnegative bounded weight function q is separated from zero on an open subset of 12. This fact contrasts with the (super)linear case alpha >= 1 in which the only bounded finite energy solution is identically zero. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:17
相关论文
共 31 条
[1]   Optimal results for the fractional heat equation involving the Hardy potential [J].
Abdellaoui, Boumediene ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 :166-207
[2]  
[Anonymous], 1964, Handbook of Mathematical Functions
[3]  
[Anonymous], 1986, ANN FAC SCI TOULOUSE, DOI DOI 10.5802/AFST.637
[4]   Optimal Control of Fractional Elliptic PDEs with State Constraints and Characterization of the Dual of Fractional-Order Sobolev Spaces [J].
Antil, Harbir ;
Verma, Deepanshu ;
Warma, Mahamadi .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (01) :1-23
[5]   EXISTENCE OF MAXIMAL AND MINIMAL SOLUTIONS FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BEBERNES, JW ;
SCHMITT, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 73 (02) :211-218
[6]   Nonuniqueness and multi-bump solutions in parabolic problems with the p-Laplacian [J].
Benedikt, Jiri ;
Girg, Petr ;
Kotrla, Lukas ;
Takac, Peter .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :991-1009
[7]  
Benedikt J, 2015, ELECTRON J DIFFER EQ
[8]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[9]   Continuum of positive solutions of superlinear fractional Laplacian problems [J].
Chhetri, Maya ;
Girg, Petr ;
Hollifield, Elliott .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (01)
[10]  
Chhetri M, 2020, ELECTRON J DIFFER EQ