The Cauchy Problem for the Sixth Order ρ-Generalized Benney-Luke Equation

被引:0
作者
Su, Xiao [1 ]
Li, Xiao [1 ]
Wang, Shubin [2 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
关键词
p-generalized Benney-Luke equation; Cauchy problem; Global existence; PHI-4; EQUATIONS; SOLITARY WAVES; STABILITY;
D O I
10.4208/jms.v57n2.24.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Cauchy problem for the sixth order p-generalized BenneyLuke equation. The local well-posedness is established in the energy space H-center dot(1)(R-n) n H-3(R-n)for 1 < n < 10, by means of the Sobolev multiplication law and the contraction mapping principle. Moreover, we establish the energy identity of solutions and provide the sufficient conditions of the global existence of solutions by analyzing the properties of the energy functional.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 20 条
[1]   Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method [J].
Akter, Jesmin ;
Akbar, M. Ali .
RESULTS IN PHYSICS, 2015, 5 :125-130
[2]  
Benney D.J., 1964, Journal of Mathematics and Physics, V43, P309
[3]  
Bergh J., 1976, Interpolation spaces. An introduction
[4]   New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics [J].
Ghanbari, Behzad ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Baleanu, Dumitru .
AIMS MATHEMATICS, 2019, 4 (06) :1523-1539
[5]  
González A, 2007, DIFFER INTEGRAL EQU, V20, P1341
[6]   Analytical studies on the Benney-Luke equation in mathematical physics [J].
Islam, S. M. Rayhanul ;
Khan, Kamruzzaman ;
Al Woadud, K. M. Abdul .
WAVES IN RANDOM AND COMPLEX MEDIA, 2018, 28 (02) :300-309
[8]  
Maris M, 2001, DIFFERENTIAL INTEGRA, V14, P361
[9]  
Milewski PA, 1996, STUD APPL MATH, V97, P149
[10]   Towards a rigorous derivation of the fifth order KP equation [J].
Paumond, L .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (5-6) :477-491