New paleomagnetic data from the sedimentary cover of the Tandilia System: Further geodynamic or geomagnetic complexities in the Late Ediacaran

被引:0
作者
Cukjati, A. [1 ,2 ]
Franceschinis, P. R. [1 ,2 ]
Arrouy, M. J. [2 ,4 ]
Gomez-Peral, L. E. [2 ,5 ]
Poire, D. G. [2 ,5 ]
Trindade, R. I. F. [3 ]
Rapalini, A. E. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ciencias Geol,Inst Geociencias Basicas Aplica, Lab Paleomagnetismo Daniel A Valencio, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
[3] Univ Sao Paulo, Dept Geofis, Inst Astron Geofis & Ciencias Atmosfer, Sao Paulo, Brazil
[4] Consejo Nacl Invest Cient & Tecn, Inst Hidrol Llanuras Dr EJ Usunoff, Buenos Aires, Argentina
[5] Ctr Invest Geol, Fac Ciencias Nat & Museo, La Plata, Argentina
关键词
Ediacaran; Rio de la Plata craton; Paleomagnetism; True polar wander; Magnetic field; TRUE POLAR WANDER; THOLEIITIC DYKE SWARMS; SIERRAS BAYAS GROUP; PLATA CRATON; U-PB; TECTONIC EVOLUTION; BUENOS-AIRES; CONGO CRATON; KAOKO BELT; FIELD;
D O I
10.1016/j.gr.2024.05.002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Anomalous paleomagnetic data have been found worldwide during the Ediacaran period, giving rise to several non-actualistic hypothesis. In order to get more information about this period, paleomagnetic, magnetic fabric and rock magnetic studies were carried out in the Avellaneda Formation (similar to 570-560 Ma) from two drill cores of the Alicia quarry in the Olavarria area of the Tandilia System, in the Rio de la Plata craton (Argentina). Anisotropy of magnetic susceptibility studies indicate a pre-tectonic origin for the magnetic fabric of this Formation. Rock magnetic studies suggest the presence of magnetite and hematite in different proportions as the main ferromagnetic minerals carrying the remanence. After stepwise thermal demagnetization, two different characteristic remanence directions were obtained for the same unit, one corresponding to the marls (''b1") of the lower section of the Avellaneda Formation, and the other from the claystones (''b2") of the upper section of this unit. These results were combined with the remanence directions obtained by Franceschinis et al. (2022) for the same unit at La Cabanita quarry, located 10 km away. This procedure allows the calculation of two paleomagnetic poles for the Avellaneda Formation. The AV1 pole is located at: 2.0 degrees S, 311.1 degrees E, A95: 5.0 degrees, N: 58 while the AV2 pole is at: 3.3 degrees N, 348.9 degrees E, A95: 11.7 degrees, N: 7. These results confirms that the Rio de la Plata craton also presents anomalous paleomagnetic data during the Ediacaran, implying extremely fast movements in very short periods of time. This can be interpreted as evidence of two inertial interchange true polar wander events during this time, as was already proposed by other authors. An alternative possibility suggests a non-actualistic behaviour of the Earth Magnetic Field, switching from axial to equatorial positions, with an intermediate stable position between them. The likelihood and implications of these two hypotheses is discussed. (C) 2024 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:220 / 248
页数:29
相关论文
共 127 条
[1]   Magnetic Properties and Paleomagnetism of Zebra Rock, Western Australia: Chemical Remanence Acquisition in Hematite Pigment and Ediacaran Geomagnetic Field Behavior [J].
Abrajevitch, Alexandra ;
Pillans, Brad J. ;
Roberts, Andrew P. ;
Kodama, Kazuto .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2018, 19 (03) :732-748
[2]   Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis [J].
Abrajevitch, Alexandra ;
Van der Voo, Rob .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 293 (1-2) :164-170
[3]   Paleomagnetism of the Ediacaran Avellaneda Formation (Argentina), Part II: Magnetic and chemical stratigraphy constraints on the onset of the Shuram carbon excursion [J].
Afonso, J. W. L. ;
Franceschinis, P. ;
Rapalini, A. E. ;
Arrouy, M. J. ;
Gomez-Peral, L. ;
Poire, D. ;
Caetano-Filho, S. ;
Trindade, R. I. F. .
PRECAMBRIAN RESEARCH, 2023, 389
[4]  
Almeida F.F.M., 1973, The South Atlantic. the Ocean Basins and Margins, V1, P411, DOI 10.1007/978-1-4684-3030-1_11
[5]  
Arrouy M.J., 2021, Special Volume of Latin American Journal of Sedimentology and Basin Analysis. La Plata: Asociacion Argentina de Sedimentologia, V28, P1
[6]  
Arrouy M. Julia, 2015, Lat. Am. j. sedimentol. basin anal., V22, P171
[7]   Late Ediacaran magnetostratigraphy of Baltica: Evidence for Magnetic Field Hyperactivity? [J].
Bazhenov, Mikhail L. ;
Levashova, Natalia M. ;
Meert, Joseph G. ;
Golovanova, Inessa V. ;
Danukalov, Konstantin N. ;
Fedorov, Natalia M. .
EARTH AND PLANETARY SCIENCE LETTERS, 2016, 435 :124-135
[8]   Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity [J].
Bono, Richard K. ;
Tarduno, John A. ;
Nimmo, Francis ;
Cottrell, Rory D. .
NATURE GEOSCIENCE, 2019, 12 (02) :143-+
[9]  
Borrello A.V., 1966, Paleontografia Bonaerense, Fasc. 5
[10]  
García MB, 2013, LINGUIST LIT, P11