A Novel Method for the Computation of the Deterministic Maximum Likelihood Estimator of Multiple Real Sinusoids

被引:0
作者
Di Viesti, Pasquale [1 ]
Selva, Jesus [2 ]
Vitetta, Giorgio M. [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Engn Enzo Ferrari DIEF, I-41125 Modena, Italy
[2] Univ Alicante, Dept Phys Syst Engn & Signal Theory DFISTS, Alicante 03080, Spain
关键词
Frequency estimation; Direction-of-arrival estimation; Vectors; Indexes; Fast Fourier transforms; Cost function; Maximum likelihood estimation; Amplitude estimation; Array signal processing; Harmonic analysis; Interpolation; Parameter estimation; array signal processing; direction-of-arrival estimation; discrete Fourier transforms; Fourier transforms; frequency estimation; harmonic analysis; interpolation; maximum likelihood estimation; parameter estimation; TONE PARAMETER-ESTIMATION; FREQUENCY ESTIMATION; SPECTRAL ESTIMATION; EFFICIENT; INTERPOLATION; ALGORITHM; UNIFORM; SIGNALS;
D O I
10.1109/ACCESS.2024.3423355
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this manuscript a novel computationally efficient method for implementing the Deter- ministic Maximum Likelihood estimator of multiple superimposed real sinusoids is derived. This method is an adaptation of a recently proposed algorithm for the estimation of undamped exponentials and offers two significant advantages in terms of complexity with respect to various alternatives available in the technical literature. First, the dependence of the computational complexity on the snapshot length is the same as that of the Fast Fourier Transform. Consequently, increasing the snapshot length does not have a substantial impact on the overall computational burden. Second, the proposed method exploits the ability of the periodogram estimator to coarsely locate the global maximum of the Deterministic Maximum Likelihood cost function, thereby eliminating the need for a global search on this last function. Our numerical results show that it achieves a better accuracy-complexity trade-off than various estimators available in the literature.
引用
收藏
页码:92142 / 92151
页数:10
相关论文
共 37 条
[1]   Iterative frequency estimation by interpolation on Fourier coefficients [J].
Aboutanios, E ;
Mulgrew, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (04) :1237-1242
[2]   Accurate Frequency Estimation of a Real Sinusoid by Three New Interpolators [J].
Bai, Guo ;
Cheng, Yufan ;
Tang, Wanbin ;
Li, Shaoqian ;
Lu, Xuanyu .
IEEE ACCESS, 2019, 7 :91696-91702
[3]   EXACT MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION OF SUPERIMPOSED EXPONENTIAL SIGNALS IN NOISE [J].
BRESLER, Y ;
MACOVSKI, A .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (05) :1081-1089
[4]   Recursive Algorithms for the Estimation of Multiple Superimposed Undamped Tones and Their Application to Radar Systems [J].
Di Viesti, Pasquale ;
Davoli, Alessandro ;
Guerzoni, Giorgio ;
Vitetta, Giorgio M. M. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (02) :1834-1853
[5]   Novel Deterministic Detection and Estimation Algorithms for Colocated Multiple-Input Multiple-Output Radars [J].
Di Viesti, Pasquale ;
Davoli, Alessandro ;
Guerzoni, Giorgio ;
Vitetta, Giorgio M. .
IEEE ACCESS, 2022, 10 :2216-2255
[6]   Efficient and Accurate Detection and Frequency Estimation of Multiple Sinusoids [J].
Djukanovic, Slobodan ;
Popovic-Bugarin, Vesna .
IEEE ACCESS, 2019, 7 :1118-1125
[7]   An Accurate Method for Frequency Estimation of a Real Sinusoid [J].
Djukanovic, Slobodan .
IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (07) :915-918
[8]   PARAMETER-ESTIMATION OF SUPERIMPOSED SIGNALS USING THE EM ALGORITHM [J].
FEDER, M ;
WEINSTEIN, E .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (04) :477-489
[9]  
GOLUB G.H., 1996, Matrix Computations, DOI 10.56021/9781421407944
[10]   A FAST SPECTRAL ESTIMATION ALGORITHM-BASED ON THE FFT [J].
GOUGH, PT .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (06) :1317-1322