Temperature dependence of mechanical properties of equiatomic NiCoCr medium-entropy alloy printed by selective laser melting

被引:3
作者
Luo, Ya-jun [1 ,2 ]
Zhang, Wei-dong [1 ]
Peng, Fei [1 ]
Liu, Sheng [2 ]
Li, Zhong-tao [1 ]
Wu, Zheng-gang [1 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[2] Hunan Inst Engn, Hunan Engn Res Ctr New Energy Vehicle Lightweight, Xiangtan 411104, Peoples R China
基金
中国国家自然科学基金;
关键词
selective laser melting; medium -entropy alloy; NiCoCr; cryogenic temperature; mechanical properties; MICROSTRUCTURE; STRENGTH; BEHAVIOR; STRESS;
D O I
10.1016/S1003-6326(24)66490-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The effects of process parameters on the densification, microstructures, and mechanical properties, as well as the temperature dependence of the mechanical properties, of a NiCoCr medium-entropy alloy fabricated with selective laser melting were studied. The results indicate that the microstructures and mechanical properties are not linearly related to the volume energy density (VED) but are affected by the scanning speed and laser power. The optimal process parameters are identified as a scanning speed of 800 mm/s and a laser power of 250 W, while the VED is only 57 J/mm3 lower than the highest value of 68 J/mm3. The yield strengths of the optimal sample are -819, -709 and -618 MPa at 77, 200, and 293 K, respectively. The temperature dependence of the mechanical properties is determined and verified by the experimental results.
引用
收藏
页码:1547 / 1557
页数:11
相关论文
共 42 条
[1]   Bulk and element-specific magnetism of medium-entropy and high-entropy Cantor-Wu alloys [J].
Billington, D. ;
James, A. D. N. ;
Harris-Lee, E., I ;
Lagos, D. A. ;
O'Neill, D. ;
Tsuda, N. ;
Toyoki, K. ;
Kotani, Y. ;
Nakamura, T. ;
Bei, H. ;
Mu, S. ;
Samolyuk, G. D. ;
Stocks, G. M. ;
Duffy, J. A. ;
Taylor, J. W. ;
Giblin, S. R. ;
Dugdale, S. B. .
PHYSICAL REVIEW B, 2020, 102 (17)
[2]   Multicomponent high-entropy Cantor alloys [J].
Cantor, B. .
PROGRESS IN MATERIALS SCIENCE, 2021, 120
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment [J].
Fujieda, Tadashi ;
Shiratori, Hiroshi ;
Kuwabara, Kosuke ;
Hirota, Mamoru ;
Kato, Takahiko ;
Yamanaka, Kenta ;
Koizumi, Yuichiro ;
Chiba, Akihiko ;
Watanabe, Seiichi .
MATERIALS LETTERS, 2017, 189 :148-151
[5]   Laser 3D printing of CoCrFeMnNi high-entropy alloy [J].
Gao, Xiaoyu ;
Lu, Yunzhuo .
MATERIALS LETTERS, 2019, 236 :77-80
[6]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[7]   Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Thurston, Keli V. S. ;
Bei, Hongbin ;
Wu, Zhenggang ;
George, Easo P. ;
Ritchie, Robert O. .
NATURE COMMUNICATIONS, 2016, 7
[8]   Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium [J].
Gu, Dongdong ;
Hagedorn, Yves-Christian ;
Meiners, Wilhelm ;
Meng, Guangbin ;
Batista, Rui Joao Santos ;
Wissenbach, Konrad ;
Poprawe, Reinhart .
ACTA MATERIALIA, 2012, 60 (09) :3849-3860
[9]   Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping [J].
Guan, S. ;
Wan, D. ;
Solberg, K. ;
Berto, F. ;
Welo, T. ;
Yue, T. M. ;
Chan, K. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 761
[10]   On the machining of selective laser melting CoCrFeMnNi high-entropy alloy [J].
Guo, Jiang ;
Goh, Minhao ;
Zhu, Zhiguang ;
Lee, Xiaohua ;
Nai, Mui Ling Sharon ;
Wei, Jun .
MATERIALS & DESIGN, 2018, 153 :211-220