Renormalization group analysis of the Anderson model on random regular graphs

被引:4
|
作者
Vanoni, Carlo [1 ,2 ]
Altshuler, Boris [3 ]
Kravtsovd, Vladimir E. [4 ]
Scardicchiob, Antonello [2 ,4 ]
机构
[1] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
[3] Columbia Univ, Phys Dept, New York, NY 10027 USA
[4] Abdus Salaam Int Ctr Theoret Phys, I-34151 Trieste, Italy
关键词
Anderson localization; renormalization group; random regular graph; many-body localization; CONTINUOUS SYMMETRY GROUP; QUASI-PARTICLE LIFETIME; LONG-RANGE ORDER; BETHE LATTICE; LOCALIZATION TRANSITION; 2-DIMENSIONAL SYSTEMS; SPIN-GLASS; QUANTUM; DESTRUCTION; DIFFUSION;
D O I
10.1073/pnas.2401955121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a renormalization group (RG) analysis of the problem of Anderson localization on a random regular graph (RRG) which generalizes the RG of Abrahams, Anderson, Licciardello, and Ramakrishnan to infinite-dimensional graphs. The RG equations necessarily involve two parameters (one being the changing connectivity of subtrees), but we show that the one-parameter scaling hypothesis is recovered for sufficiently large system sizes for both eigenstates and spectrum observables. We also explain the nonmonotonic behavior of dynamical and spectral quantities as a function of the system size for values of disorder close to the transition, by identifying two terms in the beta function of the running fractal dimension of different signs and functional dependence. Our theory provides a simple and coherent explanation for the unusual scaling behavior observed in numerical data of the Anderson model on RRG and of many-body localization.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Imaginary replica analysis of loopy regular random graphs
    Lopez, Fabian Aguirre
    Coolen, Anthony C. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [42] Sandwiching random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 690 - 701
  • [43] Sandwiching random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 690 - 701
  • [44] DIFFUSION IN RANDOM POTENTIAL - RENORMALIZATION-GROUP ANALYSIS
    KOLOMEISKII, EB
    JETP LETTERS, 1990, 52 (02) : 87 - 90
  • [45] Renormalization group analysis of Dirac fermions with a random mass
    Pan, Zhiming
    Wang, Tong
    Ohtsuki, Tomi
    Shindou, Ryuichi
    PHYSICAL REVIEW B, 2021, 104 (17)
  • [46] Colouring random regular graphs
    Shi, Lingsheng
    Wormald, Nicholas
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (03): : 459 - 494
  • [47] Generating random regular graphs
    Kim, J. H.
    Vu, V. H.
    COMBINATORICA, 2006, 26 (06) : 683 - 708
  • [48] Minors in Random Regular Graphs
    Fountoulakis, Nikolaos
    Kuehn, Daniela
    Osthus, Deryk
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (04) : 444 - 463
  • [49] Random Matchings in Regular Graphs
    Jeff Kahn
    Jeong Han Kim
    Combinatorica, 1998, 18 : 201 - 226
  • [50] Random strongly regular graphs?
    Cameron, PJ
    DISCRETE MATHEMATICS, 2003, 273 (1-3) : 103 - 114