Renormalization group analysis of the Anderson model on random regular graphs

被引:4
|
作者
Vanoni, Carlo [1 ,2 ]
Altshuler, Boris [3 ]
Kravtsovd, Vladimir E. [4 ]
Scardicchiob, Antonello [2 ,4 ]
机构
[1] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
[3] Columbia Univ, Phys Dept, New York, NY 10027 USA
[4] Abdus Salaam Int Ctr Theoret Phys, I-34151 Trieste, Italy
关键词
Anderson localization; renormalization group; random regular graph; many-body localization; CONTINUOUS SYMMETRY GROUP; QUASI-PARTICLE LIFETIME; LONG-RANGE ORDER; BETHE LATTICE; LOCALIZATION TRANSITION; 2-DIMENSIONAL SYSTEMS; SPIN-GLASS; QUANTUM; DESTRUCTION; DIFFUSION;
D O I
10.1073/pnas.2401955121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a renormalization group (RG) analysis of the problem of Anderson localization on a random regular graph (RRG) which generalizes the RG of Abrahams, Anderson, Licciardello, and Ramakrishnan to infinite-dimensional graphs. The RG equations necessarily involve two parameters (one being the changing connectivity of subtrees), but we show that the one-parameter scaling hypothesis is recovered for sufficiently large system sizes for both eigenstates and spectrum observables. We also explain the nonmonotonic behavior of dynamical and spectral quantities as a function of the system size for values of disorder close to the transition, by identifying two terms in the beta function of the running fractal dimension of different signs and functional dependence. Our theory provides a simple and coherent explanation for the unusual scaling behavior observed in numerical data of the Anderson model on RRG and of many-body localization.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Anderson orthogonality and the numerical renormalization group
    Weichselbaum, Andreas
    Muender, Wolfgang
    von Delft, Jan
    PHYSICAL REVIEW B, 2011, 84 (07):
  • [32] Discordant edges for the voter model on regular random graphs
    Avena, Luca
    Baldasso, Rangel
    Hazra, Rajat Subhra
    den Hollander, Frank
    Quattropani, Matteo
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 431 - 464
  • [33] An FPTAS for the hardcore model on random regular bipartite graphs
    Liao, Chao
    Lin, Jiabao
    Lu, Pinyan
    Mao, Zhenyu
    THEORETICAL COMPUTER SCIENCE, 2022, 929 : 174 - 190
  • [34] An FPTAS for the hardcore model on random regular bipartite graphs
    Liao, Chao
    Lin, Jiabao
    Lu, Pinyan
    Mao, Zhenyu
    Theoretical Computer Science, 2022, 929 : 174 - 190
  • [35] Mobility Edge in the Anderson Model on Partially Disordered Random Regular Graphs (Sept, 10.1134/S0021364022601750, 2022)
    Valba, O.
    Gorsky, A.
    JETP LETTERS, 2022, 116 (05) : 344 - 344
  • [36] Level compressibility for the Anderson model on regular random graphs and the eigenvalue statistics in the extended phase (vol 96, 064202, 2017)
    Metz, Fernando L.
    Perez Castillo, Isaac
    PHYSICAL REVIEW B, 2020, 102 (17)
  • [37] Numerical renormalization group study of the O(3)-symmetric Anderson model
    Bulla, R
    Hewson, AC
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 104 (02): : 333 - 340
  • [38] Numerical renormalization group study of the Anderson-Holstein impurity model
    Hewson, AC
    Meyer, D
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (03) : 427 - 445
  • [39] Alternative functional renormalization group approach to the single impurity Anderson model
    Kinza, Michael
    Ortloff, Jutta
    Bauer, Johannes
    Honerkamp, Carsten
    PHYSICAL REVIEW B, 2013, 87 (03)
  • [40] Large-disorder renormalization group study of the Anderson model of localization
    Johri, Sonika
    Bhatt, R. N.
    PHYSICAL REVIEW B, 2014, 90 (06):