Renormalization group analysis of the Anderson model on random regular graphs

被引:4
|
作者
Vanoni, Carlo [1 ,2 ]
Altshuler, Boris [3 ]
Kravtsovd, Vladimir E. [4 ]
Scardicchiob, Antonello [2 ,4 ]
机构
[1] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
[3] Columbia Univ, Phys Dept, New York, NY 10027 USA
[4] Abdus Salaam Int Ctr Theoret Phys, I-34151 Trieste, Italy
关键词
Anderson localization; renormalization group; random regular graph; many-body localization; CONTINUOUS SYMMETRY GROUP; QUASI-PARTICLE LIFETIME; LONG-RANGE ORDER; BETHE LATTICE; LOCALIZATION TRANSITION; 2-DIMENSIONAL SYSTEMS; SPIN-GLASS; QUANTUM; DESTRUCTION; DIFFUSION;
D O I
10.1073/pnas.2401955121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a renormalization group (RG) analysis of the problem of Anderson localization on a random regular graph (RRG) which generalizes the RG of Abrahams, Anderson, Licciardello, and Ramakrishnan to infinite-dimensional graphs. The RG equations necessarily involve two parameters (one being the changing connectivity of subtrees), but we show that the one-parameter scaling hypothesis is recovered for sufficiently large system sizes for both eigenstates and spectrum observables. We also explain the nonmonotonic behavior of dynamical and spectral quantities as a function of the system size for values of disorder close to the transition, by identifying two terms in the beta function of the running fractal dimension of different signs and functional dependence. Our theory provides a simple and coherent explanation for the unusual scaling behavior observed in numerical data of the Anderson model on RRG and of many-body localization.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Numerical renormalization group study of the 'compactified' Anderson model
    Bulla, R
    Hewson, AC
    PHYSICA B, 1997, 230 : 627 - 629
  • [22] Return probability for the Anderson model on the random regular graph
    Bera, Soumya
    De Tomasi, Giuseppe
    Khaymovich, Ivan M.
    Scardicchio, Antonello
    PHYSICAL REVIEW B, 2018, 98 (13)
  • [23] THE DENSITY OF STATES IN THE ANDERSON MODEL AT WEAK DISORDER - A RENORMALIZATION-GROUP ANALYSIS OF THE HIERARCHICAL MODEL
    BOVIER, A
    JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (3-4) : 745 - 779
  • [24] From Anderson localization on random regular graphs to many-body localization
    Tikhonov, K. S.
    Mirlin, A. D.
    ANNALS OF PHYSICS, 2021, 435
  • [25] Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model
    Antonov, Nikolay V.
    Gulitskiy, Nikolay M.
    Kakin, Polina I.
    Kerbitskiy, Dmitriy A.
    UNIVERSE, 2023, 9 (03)
  • [26] Real space renormalization group analysis of the random field Ising model
    Fortin, JY
    Holdsworth, PCW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21): : L539 - L545
  • [27] On the asymmetry of random regular graphs and random graphs
    Kim, JH
    Sudakov, B
    Vu, VH
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 216 - 224
  • [28] RENORMALIZATION-GROUP STUDY OF THE ANDERSON-HUBBARD MODEL
    MA, M
    PHYSICAL REVIEW B, 1982, 26 (09): : 5097 - 5102
  • [29] Functional renormalization group study of the Anderson-Holstein model
    Laakso, M. A.
    Kennes, D. M.
    Jakobs, S. G.
    Meden, V.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [30] Solution of the Anderson impurity model via the functional renormalization group
    Streib, Simon
    Isidori, Aldo
    Kopietz, Peter
    PHYSICAL REVIEW B, 2013, 87 (20)