Renormalization group analysis of the Anderson model on random regular graphs

被引:4
|
作者
Vanoni, Carlo [1 ,2 ]
Altshuler, Boris [3 ]
Kravtsovd, Vladimir E. [4 ]
Scardicchiob, Antonello [2 ,4 ]
机构
[1] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
[3] Columbia Univ, Phys Dept, New York, NY 10027 USA
[4] Abdus Salaam Int Ctr Theoret Phys, I-34151 Trieste, Italy
关键词
Anderson localization; renormalization group; random regular graph; many-body localization; CONTINUOUS SYMMETRY GROUP; QUASI-PARTICLE LIFETIME; LONG-RANGE ORDER; BETHE LATTICE; LOCALIZATION TRANSITION; 2-DIMENSIONAL SYSTEMS; SPIN-GLASS; QUANTUM; DESTRUCTION; DIFFUSION;
D O I
10.1073/pnas.2401955121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a renormalization group (RG) analysis of the problem of Anderson localization on a random regular graph (RRG) which generalizes the RG of Abrahams, Anderson, Licciardello, and Ramakrishnan to infinite-dimensional graphs. The RG equations necessarily involve two parameters (one being the changing connectivity of subtrees), but we show that the one-parameter scaling hypothesis is recovered for sufficiently large system sizes for both eigenstates and spectrum observables. We also explain the nonmonotonic behavior of dynamical and spectral quantities as a function of the system size for values of disorder close to the transition, by identifying two terms in the beta function of the running fractal dimension of different signs and functional dependence. Our theory provides a simple and coherent explanation for the unusual scaling behavior observed in numerical data of the Anderson model on RRG and of many-body localization.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Renormalization Group Analysis of the Hierarchical Anderson Model
    Per von Soosten
    Simone Warzel
    Annales Henri Poincaré, 2017, 18 : 1919 - 1947
  • [2] Renormalization Group Analysis of the Hierarchical Anderson Model
    von Soosten, Per
    Warzel, Simone
    ANNALES HENRI POINCARE, 2017, 18 (06): : 1919 - 1947
  • [3] Mobility Edge in the Anderson model on partially disordered random regular graphs
    Valba, Olga
    Gorsky, A.
    arXiv, 2021,
  • [4] Mobility Edge in the Anderson Model on Partially Disordered Random Regular Graphs
    O. Valba
    A. Gorsky
    JETP Letters, 2022, 116 : 398 - 404
  • [5] Anderson localization and ergodicity on random regular graphs
    Tikhonov, K. S.
    Mirlin, A. D.
    Skvortsov, M. A.
    PHYSICAL REVIEW B, 2016, 94 (22)
  • [6] Mobility Edge in the Anderson Model on Partially Disordered Random Regular Graphs
    Valba, O.
    Gorsky, A.
    JETP LETTERS, 2022, 116 (06) : 398 - 404
  • [7] Subdiffusive Thouless time scaling in the Anderson model on random regular graphs
    Colmenarez, Luis
    Luitz, David J.
    Khaymovich, Ivan M.
    De Tomasi, Giuseppe
    PHYSICAL REVIEW B, 2022, 105 (17)
  • [8] Robust extended states in Anderson model on partially disordered random regular graphs
    Kochergin, Daniil
    Khaymovich, Ivan M.
    Valba, Olga
    Gorsky, Alexander
    SCIPOST PHYSICS, 2024, 16 (04):
  • [9] Level compressibility for the Anderson model on regular random graphs and the eigenvalue statistics in the extended phase
    Metz, Fernando L.
    Perez Castillo, Isaac
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [10] Quantum ergodicity for the Anderson model on regular graphs
    Anantharaman, Nalini
    Sabri, Mostafa
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)