Residual Spatial Reduced Transformer Based on YOLOv5 for UAV Images Object Detection

被引:0
|
作者
Chen, Li [1 ]
Cang, Naimeng [1 ]
Zhang, Wenbo [1 ]
Zhang, Chan [1 ]
Zhang, Weidong [1 ,2 ]
Guo, Dongsheng [1 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, 58 Peoples Rd, Haikou 570228, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Automat, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Residual spatial reduced transformer; yolov5; object detection; unmanned aerial vehicle (UAV) images; ENSEMBLE; MODEL;
D O I
10.1142/S0218001424500071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection on unmanned aerial vehicle (UAV) images is an important branch of object detection, belonging to small object detection in a broad sense. Detecting objects in UAV images poses a greater challenge due to the predominance of small objects and dense occlusion caused by UAV capturing images from varying heights and angles. To solve the above problems, we propose Residual Spatial Reduced Transformer based on YOLOv5 (RSRT-YOLOv5). Specifically, Slice Aided Enhancement Module (SAEM) is introduced to enhance the feature quality of small objects. Secondly, a Global attention-based Bi-directional Feature Fusion (GBFF) module is proposed. In the Neck architecture, an efficient Residual Spatial Reduced Transformer (RSRT) module is integrated in order to achieve more efficient feature representation and richer global contextual associations. Finally, our method is evaluated on the Visdrone2019 dataset, and the experimental results show that RSRT-YOLOv5 outperforms the baseline model (yolov5) and successfully improves the detection performance of UAV images.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Research on Object Detection and Recognition Method for UAV Aerial Images Based on Improved YOLOv5
    Zhang, Heng
    Shao, Faming
    He, Xiaohui
    Zhang, Zihan
    Cai, Yonggen
    Bi, Shaohua
    DRONES, 2023, 7 (06)
  • [2] Dense Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Aerial Images
    Chen, Jiahui
    Wang, Xiaohong
    Computer Engineering and Applications, 2024, 60 (03) : 100 - 109
  • [3] Small object detection in UAV image based on improved YOLOv5
    Zhang, Jian
    Wan, Guoyang
    Jiang, Ming
    Lu, Guifu
    Tao, Xiuwen
    Huang, Zhiyuan
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2023, 11 (01)
  • [4] Swin-Transformer-Based YOLOv5 for Small-Object Detection in Remote Sensing Images
    Cao, Xuan
    Zhang, Yanwei
    Lang, Song
    Gong, Yan
    SENSORS, 2023, 23 (07)
  • [5] Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Image
    Xie, Chunhui
    Wu, Jinming
    Xu, Huaiyu
    Computer Engineering and Applications, 2023, 59 (09) : 198 - 206
  • [6] Detection of River Floating Debris in UAV Images Based on Improved YOLOv5
    Huang, Junkai
    Jiang, Xianliang
    Jin, Guang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] A Wheat Spike Detection Method in UAV Images Based on Improved YOLOv5
    Zhao, Jianqing
    Zhang, Xiaohu
    Yan, Jiawei
    Qiu, Xiaolei
    Yao, Xia
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    REMOTE SENSING, 2021, 13 (16)
  • [8] Evaluating YOLOv4 and YOLOv5 for Enhanced Object Detection in UAV-Based Surveillance
    Alhassan, Mugtaba Abdalrazig Mohamed
    Yilmaz, Ersen
    PROCESSES, 2025, 13 (01)
  • [9] An Improved Underwater Object Detection Algorithm Based on YOLOv5 for Blurry Images
    Cheng, Liyan
    Zhou, Hui
    Le, Xingni
    Chen, Wanru
    Tao, Hechuan
    Ding, Jiarui
    Wang, Xinru
    Wang, Ruizhi
    Yang, Qunhui
    Chen, Chen
    Kong, Meiwei
    2024 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND WIRELESS OPTICAL COMMUNICATIONS, ICWOC, 2024, : 42 - 47
  • [10] An Improved UAV Detection Method Based on YOLOv5
    Liu, Xinfeng
    Chen, Mengya
    Li, Chenglong
    Tian, Jie
    Zhou, Hao
    Ullah, Inam
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 739 - 750