Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia

被引:0
|
作者
Wang, Jia [1 ,2 ,3 ]
Liu, Xinyu [2 ]
Chen, Yiran [2 ]
Zhu, Feng lin [1 ,2 ]
Sheng, Jiajing [3 ]
Diao, Ying [4 ]
机构
[1] Anhui Univ Sci & Technol, Joint Natl Local Engn Res Ctr Safe & Precise Coal, Huainan, Peoples R China
[2] Anhui Univ Sci & Technol, Key Lab Ind Dust Prevent & Control & Occupat Safet, Minist Educ, Huainan, Peoples R China
[3] Wuhan Univ, Coll Life Sci, Hubei Lotus Engn Ctr, State Key Lab Hybrid Rice, Wuhan, Peoples R China
[4] Wuhan Polytech Univ, Sch Life Sci & Technol, Wuhan, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 05期
关键词
STRESS;
D O I
10.1371/journal.pone.0302940
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Physiological and transcriptomic analyses reveal the molecular mechanism of PsAMT1.2 in salt tolerance
    Zhuang, Shuaijun
    Yu, Zhaoyou
    Li, Jiayuan
    Wang, Fan
    Zhang, Chunxia
    TREE PHYSIOLOGY, 2024, 44 (10)
  • [2] Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress
    Ye, Xueling
    Li, Qiang
    Liu, Changying
    Wu, Qi
    Wan, Yan
    Wu, Xiaoyong
    Zhao, Gang
    Zou, Liang
    Xiang, Dabing
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [3] Comparative physiological and transcriptomic analyses reveal salt tolerance mechanisms of Zygosaccharomyces rouxii
    Wang, Dingkang
    Hao, Zhiqiang
    Zhao, Jinsong
    Jin, Yao
    Huang, Jun
    Zhou, Rongqing
    Wu, Chongde
    PROCESS BIOCHEMISTRY, 2019, 82 : 59 - 67
  • [4] Transcriptomic and physiological analyses of Miscanthus lutarioriparius in response to plumbum stress
    Wang, Jia
    Duan, Xuchu
    Wang, Yaozhou
    Sheng, Jiajing
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 176
  • [5] Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud
    Jingjing Wang
    Cong An
    Hailin Guo
    Xiangyang Yang
    Jingbo Chen
    Junqin Zong
    Jianjian Li
    Jianxiu Liu
    BMC Plant Biology, 20
  • [6] Comparative Transcriptomic and Physiological Analyses Reveal Salt Tolerance Mechanisms of Beta vulgaris L
    Li, Ningning
    Cheng, Jiamin
    Zhang, Zijian
    Sun, Yaqing
    Li, Zhi
    Mu, Yingnan
    Li, Guolong
    SUGAR TECH, 2025,
  • [7] Transcriptomic and Physiological Analyses Reveal the Molecular Mechanism through Which Exogenous Melatonin Increases Drought Stress Tolerance in Chrysanthemum
    Luo, Yan
    Hu, Taotao
    Huo, Yunyun
    Wang, Lingling
    Zhang, Li
    Yan, Rui
    PLANTS-BASEL, 2023, 12 (07):
  • [8] Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud
    Wang, Jingjing
    An, Cong
    Guo, Hailin
    Yang, Xiangyang
    Chen, Jingbo
    Zong, Junqin
    Li, Jianjian
    Liu, Jianxiu
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [9] Physiological and transcriptomic analyses reveal mechanisms of exogenous strigolactones to regulate cold tolerance in litchi fruit
    Liu, Jialiang
    Bao, Yumei
    Liu, Shiqi
    Zhu, Lisha
    Xu, Xiangbin
    Jiang, Guoxiang
    Zhang, Zhengke
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2024, 210
  • [10] Transcriptomic and Functional Analyses of Two Cadmium Hyper-Enriched Duckweed Strains Reveal Putative Cadmium Tolerance Mechanisms
    Yang, Gui-Li
    Huang, Lei
    Yang, Xiao
    Li, Zhu
    Liao, Hai-Min
    Mao, Kang
    Liu, Zhao-Ju
    Geng, He-Yan
    Cao, Qin
    Tan, Ai-Juan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)