On some two parameter estimators for the linear regression models with correlated predictors: simulation and application

被引:2
作者
Khan, Muhammad Shakir [1 ,2 ]
Ali, Amjad [1 ]
Suhail, Muhammad [3 ]
Kibria, B. M. Golam [4 ]
机构
[1] Islamia Coll Peshawar, Dept Stat, Peshawar, Pakistan
[2] Livestock & Dairy Dev Dept Research Wing, Peshawar, Khyber Pakhtunk, Pakistan
[3] Univ Agr, Dept Stat, Peshawar Amir Muhammad Khan Campus, Mardan, Pakistan
[4] FL Int Univ, Dept Math & Stat, Miami, FL USA
关键词
Mean squared error; Monte-Carlo simulation; Multicollinearity; Prediction; Ridge regression; Statistical model; RIDGE-REGRESSION; PERFORMANCE;
D O I
10.1080/03610918.2024.2369809
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Regression analysis is widely used to predict the response variable utilizing one or more predictor variables. In many fields of study, the predictors are highly correlated causing multicollinearity problem that severely affects the efficiency of ordinary least square (OLS) estimators by significantly inflating their variances. To solve the multicollinearity problem, various one and two parameter ridge estimators are available in literature. In this article, a class of modified two parameter Lipovetsky-Conklin ridge estimators is proposed based on eigen values of X ' X matrix that provide an automatic dealing option for treating different levels of multicollinearity. An extensive simulations study followed by real life example is used to evaluate the performance of proposed estimators based on MSE criterion. In most of the simulation conditions, our proposed estimators outperformed the existing estimators.
引用
收藏
页数:15
相关论文
共 27 条
[1]   A comparison of some new and old robust ridge regression estimators [J].
Ali, Sajid ;
Khan, Himmad ;
Shah, Ismail ;
Butt, Muhammad Moeen ;
Suhail, Muhammad .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (08) :2213-2231
[2]  
Ayinde K., 2022, Nicel Bilimler Dergisi, V4, P22, DOI [10.51541/nicel.1042316, DOI 10.51541/NICEL.1042316]
[3]  
Belsley D.A., 1980, Diagnostics: Identifying influential data and sources of collinearity
[4]  
Economic Survey of Pakistan, 2022, Statistical Supplement. Internet. Islamabad
[5]  
Gujarati D. N., 2009, Basic Econometrics, DOI DOI 10.1007/S10797-005-1619-9
[6]   Tests of regression coefficients under ridge regression models [J].
Halawa, AM ;
El Bassiouni, MY .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2000, 65 (04) :341-356
[7]   RIDGE REGRESSION - SOME SIMULATIONS [J].
HOERL, AE ;
KENNARD, RW ;
BALDWIN, KF .
COMMUNICATIONS IN STATISTICS, 1975, 4 (02) :105-123
[8]   RIDGE REGRESSION - APPLICATIONS TO NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :69-&
[9]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[10]   Modified Ridge Regression Estimators [J].
Khalaf, G. ;
Mansson, Kristofer ;
Shukur, Ghazi .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (08) :1476-1487