High-definition velocity-space tomography of fast-ion dynamics

被引:65
|
作者
Salewski, M. [1 ]
Geiger, B. [2 ]
Jacobsen, A. S. [2 ]
Hansen, P. C. [3 ]
Heidbrink, W. W. [4 ]
Korsholm, S. B. [1 ]
Leipold, F. [1 ]
Madsen, J. [1 ]
Moseev, D. [5 ]
Nielsen, S. K. [1 ]
Nocente, M. [6 ,7 ]
Odstrcil, T. [2 ]
Rasmussen, J. [1 ]
Stagner, L. [4 ]
Stejner, M. [1 ]
Weiland, M. [2 ]
机构
[1] Tech Univ Denmark, Dept Phys, Lyngby, Denmark
[2] Max Planck Inst Plasma Phys, Garching, Germany
[3] Tech Univ Denmark, Dept Appl Math & Comp Sci, Lyngby, Denmark
[4] Univ Calif Irvine, Irvine, CA USA
[5] Max Planck Inst Plasma Phys, Greifswald, Germany
[6] Univ Milano Bicocca, Dept Phys, Milan, Italy
[7] CNR, Ist Fis Plasma, Milan, Italy
关键词
fast ions; tomography; tokamaks; sawteeth; neutral beam injection; fast-ion D-alpha spectroscopy; RECONSTRUCTION;
D O I
10.1088/0029-5515/56/10/106024
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Velocity-space tomography of the fast-ion distribution function in a fusion plasma is usually a photon-starved tomography method due to limited optical access and signal-to-noise ratio of fast-ion D-alpha (FIDA) spectroscopy as well as the strive for high-resolution images. In high-definition tomography, prior information makes up for this lack of data. We restrict the target velocity space through the measured absence of FIDA light, impose phase-space densities to be non-negative, and encode the known geometry of neutral beam injection (NBI) sources. We further use a numerical simulation as prior information to reconstruct where in velocity space the measurements and the simulation disagree. This alternative approach is demonstrated for four-view as well as for two-view FIDA measurements. The high-definition tomography tools allow us to study fast ions in sawtoothing plasmas and the formation of NBI peaks at full, half and one-third energy by time-resolved tomographic movies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Inversion methods for fast-ion velocity-space tomography in fusion plasmas
    Jacobsen, A. S.
    Stagner, L.
    Salewski, M.
    Geiger, B.
    Heidbrink, W. W.
    Korsholm, S. B.
    Leipold, F.
    Nielsen, S. K.
    Rasmussen, J.
    Stejner, M.
    Thomsen, H.
    Weiland, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (04)
  • [2] Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography
    Salewski, M.
    Nocente, M.
    Jacobsen, A. S.
    Binda, F.
    Cazzaniga, C.
    Eriksson, J.
    Geiger, B.
    Gorini, G.
    Hellesen, C.
    Kiptily, V. G.
    Koskela, T.
    Korsholm, S. B.
    Kurki-Suonio, T.
    Leipold, F.
    Moseev, D.
    Nielsen, S. K.
    Rasmussen, J.
    Schneider, P. A.
    Sharapov, S. E.
    Stejner, M.
    Tardocchi, M.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    FUSION SCIENCE AND TECHNOLOGY, 2018, 74 (1-2) : 23 - 36
  • [3] Combination of fast-ion diagnostics in velocity-space tomographies
    Salewski, M.
    Geiger, B.
    Nielsen, S. K.
    Bindslev, H.
    Garcia-Munoz, M.
    Heidbrink, W. W.
    Korsholm, S. B.
    Leipold, F.
    Madsen, J.
    Meo, F.
    Michelsen, P. K.
    Moseev, D.
    Stejner, M.
    Tardini, G.
    NUCLEAR FUSION, 2013, 53 (06)
  • [4] Feasibility study of fast-ion velocity-space tomography in KSTAR via phantom tests
    Han, Jiyun
    Kim, Junghee
    Kim, Minho
    Lee, Myungwon
    Kang, Jisung
    Yoo, Jeongwon
    Sung, Choongki
    FUSION ENGINEERING AND DESIGN, 2024, 207
  • [5] Velocity-space sensitivity and tomography of scintillator-based fast-ion loss detectors
    Galdon-Quiroga, J.
    Garcia-Munoz, M.
    Salewski, M.
    Jacobsen, A. S.
    Sanchis-Sanchez, L.
    Rodriguez-Ramos, M.
    Ayllon-Guerola, J.
    Garcia-Lopez, J.
    Gonzalez-Martin, J.
    Jimenez-Ramos, M. C.
    Rivero-Rodriguez, J. F.
    Viezzer, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (10)
  • [6] Tomography of fast-ion velocity-space distributions from synthetic CTS and FIDA measurements
    Salewski, M.
    Geiger, B.
    Nielsen, S. K.
    Bindslev, H.
    Garcia-Munoz, M.
    Heidbrink, W. W.
    Korsholm, S. B.
    Leipold, F.
    Meo, F.
    Michelsen, P. K.
    Moseev, D.
    Stejner, M.
    Tardini, G.
    NUCLEAR FUSION, 2012, 52 (10)
  • [7] On velocity-space sensitivity of fast-ion D-alpha spectroscopy
    Salewski, M.
    Geiger, B.
    Moseev, D.
    Heidbrink, W. W.
    Jacobsen, A. S.
    Korsholm, S. B.
    Leipold, F.
    Madsen, J.
    Nielsen, S. K.
    Rasmussen, J.
    Stejner, M.
    Weiland, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (10)
  • [8] Benchmark and combined velocity-space tomography of fast-ion D-alpha spectroscopy and collective Thomson scattering measurements
    Jacobsen, A. S.
    Salewski, M.
    Geiger, B.
    Korsholm, S. B.
    Leipold, F.
    Nielsen, S. K.
    Rasmussen, J.
    Stejner, M.
    Weiland, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (04)
  • [9] A fast model to resolve the velocity-space of fast-ion losses detected in ASDEX Upgrade and MAST Upgrade
    Rivero-Rodriguez, J. F.
    Garcia-Munoz, M.
    Galdon-Quiroga, J.
    Gonzalez-Martin, J.
    Ayllon-Guerola, J.
    Garcia-Vallejo, D.
    Martin, R.
    McClements, K. G.
    Sanchis, L.
    Zoletnik, S.
    JOURNAL OF INSTRUMENTATION, 2019, 14
  • [10] Preliminary study of velocity-space distribution of fast-ion loss under ion cyclotron resonance heating in the EAST
    Wang S.
    Huang J.
    Chang J.
    Zhang X.
    Gao W.
    Fu J.
    Sun Y.
    Shi C.
    Wang X.
    Zhang Z.
    He Jishu/Nuclear Techniques, 2023, 46 (12):