Cooperative oxidation of NH3 and H2O to selectively produce nitrate via a nearly barrierless N-O coupling pathway

被引:4
作者
Dang, Kun [1 ,2 ]
Wu, Lei [1 ,2 ]
Liu, Siqin [1 ,2 ]
Ji, Hongwei [1 ,2 ]
Chen, Chuncheng [1 ,2 ]
Zhang, Yuchao [1 ,2 ]
Zhao, Jincai [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, Key Lab Photochem, Inst Chem, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
WATER OXIDATION; SILICON PHOTOANODES; COPPER; OXIDE; EFFICIENT; SURFACES;
D O I
10.1039/d4ee01483a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemical (PEC) direct ammonia oxidation is a sustainable alternative to the industrial production of nitrate or nitrite (NOx-), while the highly selective NOx- synthesis remains challenging due to the intricate kinetics and the inherent competition from the water oxidation reaction (WOR). Herein, we report a high-performance Si-based photoanode modified with Ni-Cu bimetallic nanosheets (NiCuOx/Ni/n-Si), which presents a benchmark faradaic efficiency of 99% for PEC NOx- synthesis together with a record partial photocurrent density of similar to 12 mA cm(-2) at a low bias of 1.38 V-RHE under AM 1.5G illumination. This results in a NOx- production rate of 59 mu mol h(-1) cm(-2) and simultaneously a H-2 production rate of 214 mu mol h(-1) cm(-2) on the counter electrode. Operando PEC spectroscopic measurements combined with theoretical calculations reveal that water molecules activated at Ni sites produce (NiO)-O-IV species, which bond with the activated ammonia at Cu sites via a nearly barrierless N-O coupling pathway. Such a bimetallic synergetic mechanism presents a first-order hole-transfer kinetics, which kinetically circumvents the competing O-2 production and thus significantly promotes the selectivity to NOx- on the NiCuOx/Ni/n-Si photoanode. This work provides a promising strategy for designing advanced photoanodes for cooperative oxidation reactions.
引用
收藏
页码:4681 / 4691
页数:11
相关论文
共 46 条
  • [1] Strategies for stable water splitting via protected photoelectrodes
    Bae, Dowon
    Seger, Brian
    Vesborg, Peter C. K.
    Hansen, Ole
    Chorkendorff, Ib
    [J]. CHEMICAL SOCIETY REVIEWS, 2017, 46 (07) : 1933 - 1954
  • [2] Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction**
    Bai, Lichen
    Lee, Seunghwa
    Hu, Xile
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) : 3095 - 3103
  • [3] Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl-
    Butcher, Dennis P., Jr.
    Gewirth, Andrew A.
    [J]. NANO ENERGY, 2016, 29 : 457 - 465
  • [4] Probing Structural Evolution and Charge Storage Mechanism of NiO2Hx Electrode Materials using In Operando Resonance Raman Spectroscopy
    Chen, Dongchang
    Xiong, Xunhui
    Zhao, Bote
    Mahmoud, Mahmoud A.
    El-Sayed, Mostafa A.
    Liu, Meilin
    [J]. ADVANCED SCIENCE, 2016, 3 (06):
  • [5] Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst
    Chen, Feng-Yang
    Wu, Zhen-Yu
    Gupta, Srishti
    Rivera, Daniel J.
    Lambeets, Sten, V
    Pecaut, Stephanie
    Kim, Jung Yoon Timothy
    Zhu, Peng
    Finfrock, Y. Zou
    Meira, Debora Motta
    King, Graham
    Gao, Guanhui
    Xu, Wenqian
    Cullen, David A.
    Zhou, Hua
    Han, Yimo
    Perea, Daniel E.
    Muhich, Christopher L.
    Wang, Haotian
    [J]. NATURE NANOTECHNOLOGY, 2022, 17 (07) : 759 - +
  • [6] Beyond fossil fuel-driven nitrogen transformations
    Chen, Jingguang G.
    Crooks, Richard M.
    Seefeldt, Lance C.
    Bren, Kara L.
    Bullock, R. Morris
    Darensbourg, Marcetta Y.
    Holland, Patrick L.
    Hoffman, Brian
    Janik, Michael J.
    Jones, Anne K.
    Kanatzidis, Mercouri G.
    King, Paul
    Lancaster, Kyle M.
    Lymar, Sergei V.
    Pfromm, Peter
    Schneider, William F.
    Schrock, Richard R.
    [J]. SCIENCE, 2018, 360 (6391)
  • [7] A CoOxHy/β-NiOOH electrocatalyst for robust ammonia oxidation to nitrite and nitrate
    Cohen, Sam
    Johnston, Sam
    Nguyen, Cuong K.
    Nguyen, Tam D.
    Hoogeveen, Dijon A.
    Van Zeil, Daniel
    Giddey, Sarbjit
    Simonov, Alexandr N.
    MacFarlane, Douglas R.
    [J]. GREEN CHEMISTRY, 2023, 25 (18) : 7157 - 7165
  • [8] In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of CuIII Oxides as Catalytically Active Species
    Deng, Yilin
    Handoko, Albertus D.
    Du, Yonghua
    Xi, Shibo
    Yeo, Boon Siang
    [J]. ACS CATALYSIS, 2016, 6 (04): : 2473 - 2481
  • [9] Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor
    Dharmaraj, N
    Prabu, P
    Nagarajan, S
    Kim, CH
    Park, JH
    Kim, HY
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 128 (1-3): : 111 - 114
  • [10] How pH affects electrochemical processes Three mechanisms underlie the impact of pH on the activity of electrochemical reactions
    Govindarajan, Nitish
    Xu, Aoni
    Chan, Karen
    [J]. SCIENCE, 2022, 375 (6579) : 379 - 380