Deterministic Ansätze for the measurement-based variational quantum eigensolver

被引:1
作者
Schroeder, Anna [1 ,2 ]
Heller, Matthias [3 ,4 ]
Gachechiladze, Mariami [1 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
[2] Merck KGaA, Darmstadt, Germany
[3] Fraunhofer Inst Comp Graph Res IGD, Darmstadt, Germany
[4] Tech Univ Darmstadt, Interact Graph Syst Grp, Darmstadt, Germany
关键词
measurement-based variational eigensolver; variational quantum eigensolver; measurement-based quantum computing; ADVANTAGE;
D O I
10.1088/1367-2630/ad51e5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement-based quantum computing (MBQC) is a promising approach to reducing circuit depth in noisy intermediate-scale quantum algorithms such as the variational quantum eigensolver (VQE). Unlike gate-based computing, MBQC employs local measurements on a preprepared resource state, offering a trade-off between circuit depth and qubit count. Ensuring determinism is crucial to MBQC, particularly in the VQE context, as a lack of flow in measurement patterns leads to evaluating the cost function at irrelevant locations. This study introduces MBVQE-ans & auml;tze that respect determinism and resemble the widely used problem-agnostic hardware-efficient VQE ansatz. We evaluate our approach using ideal simulations on the Schwinger Hamiltonian and XY-model and perform experiments on IBM hardware with an adaptive measurement capability. In our use case, we find that ensuring determinism works better via postselection than by adaptive measurements at the expense of increased sampling cost. Additionally, we propose an efficient MBQC-inspired method to prepare the resource state, specifically the cluster state, on hardware with heavy-hex connectivity, requiring a single measurement round, and implement this scheme on quantum computers with 27 and 127 qubits. We observe notable improvements for larger cluster states, although direct gate-based implementation achieves higher fidelity for smaller instances.
引用
收藏
页数:18
相关论文
共 79 条
[1]   Mapping graph state orbits under local complementation [J].
Adcock, Jeremy C. ;
Morley-Short, Sam ;
Dahlberg, Axel ;
Silverstone, Joshua W. .
QUANTUM, 2020, 4
[2]  
Amsler M, 2023, Arxiv, DOI arXiv:2301.11838
[3]   Fast simulation of stabilizer circuits using a graph-state representation [J].
Anders, S ;
Briegel, HJ .
PHYSICAL REVIEW A, 2006, 73 (02)
[4]  
Anselmetti GLR, 2021, Arxiv, DOI arXiv:2104.05695
[5]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[6]   SU(2) hadrons on a quantum computer via a variational approach [J].
Atas, Yasar Y. ;
Zhang, Jinglei ;
Lewis, Randy ;
Jahanpour, Amin ;
Haase, Jan F. ;
Muschik, Christine A. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]  
Hertzberg JB, 2020, Arxiv, DOI arXiv:2009.00781
[8]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[9]  
Bauls M C., 2020, Eur. Phys. J. D, V74, P1
[10]  
Bittel L., 2022, arXiv