Study on The Effect of Encoding Method in Quantum Machine Learning

被引:0
作者
Xiong, Qingqing [1 ]
Jiang, Jinzhe [2 ,3 ]
Li, Chen [2 ,3 ]
Zhang, Xin [2 ,3 ]
Zhao, Yaqian [2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou, Peoples R China
[2] Inspur Elect Informat Ind Co Ltd, Jinan, Peoples R China
[3] Inspur Beijing Elect Informat Ind Co, Beijing, Peoples R China
来源
2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024 | 2024年
关键词
Quantum machine learning; Data encoding; Metrics;
D O I
10.1145/3651671.3651689
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning algorithms use qubit encoding and quantum circuits to perform feature extraction and pattern recognition. However, the choice of data encoding methods can have a significant impact on the model's performance. To evaluate the effect of different encoding methods in a systematic way, we propose two metrics: distribution distance and distribution radius. These metrics describe how the encoded data distribute in the Hilbert space. We show that there is a positive correlation between prediction accuracy and distribution distance, and a negative correlation between prediction accuracy and distribution radius, both theoretically and experimentally. Based on our findings, we suggest a comparative evaluation of data encoding methods for quantum machine learning, which can help improve the learning efficiency.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [21] On the Capabilities of Quantum Machine Learning
    Alghamdi, Sarah
    Almuhammadi, Sultan
    2022 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MACHINE LEARNING APPLICATIONS (CDMA 2022), 2022, : 181 - 187
  • [22] Machine learning method for state preparation and gate synthesis on photonic quantum computers
    Arrazola, Juan Miguel
    Bromley, Thomas R.
    Izaac, Josh
    Myers, Casey R.
    Bradler, Kamil
    Killoran, Nathan
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02):
  • [23] Financial fraud detection: A comparative study of quantum machine learning models
    Innan, Nouhaila
    Khan, Muhammad Al-Zafar
    Bennai, Mohamed
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2024, 22 (02)
  • [24] Quantum state tomography using quantum machine learning
    Innan, Nouhaila
    Siddiqui, Owais Ishtiaq
    Arora, Shivang
    Ghosh, Tamojit
    Kocak, Yasemin Poyraz
    Paragas, Dominic
    Galib, Abdullah Al Omar
    Khan, Muhammad Al-Zafar
    Bennai, Mohamed
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [25] Benefits of Open Quantum Systems for Quantum Machine Learning
    Olivera-Atencio, Maria Laura
    Lamata, Lucas
    Casado-Pascual, Jesus
    ADVANCED QUANTUM TECHNOLOGIES, 2023,
  • [26] Quantum Machine Learning for Credit Scoring
    Schetakis, Nikolaos
    Aghamalyan, Davit
    Boguslavsky, Michael
    Rees, Agnieszka
    Rakotomalala, Marc
    Griffin, Paul Robert
    MATHEMATICS, 2024, 12 (09)
  • [27] Machine Learning: Quantum vs Classical
    Khan, Tariq M.
    Robles-Kelly, Antonio
    IEEE ACCESS, 2020, 8 : 219275 - 219294
  • [28] Bibliometric Survey of Quantum Machine Learning
    Pande M.
    Mulay P.
    Science and Technology Libraries, 2020, 39 (04) : 369 - 382
  • [29] Kernel methods in Quantum Machine Learning
    Riccardo Mengoni
    Alessandra Di Pierro
    Quantum Machine Intelligence, 2019, 1 : 65 - 71
  • [30] Quantum Machine Learning for Malware Classification
    Barrue, Gregoire
    Quertier, Tony
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT V, 2025, 2137 : 245 - 260