Study on The Effect of Encoding Method in Quantum Machine Learning

被引:0
作者
Xiong, Qingqing [1 ]
Jiang, Jinzhe [2 ,3 ]
Li, Chen [2 ,3 ]
Zhang, Xin [2 ,3 ]
Zhao, Yaqian [2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou, Peoples R China
[2] Inspur Elect Informat Ind Co Ltd, Jinan, Peoples R China
[3] Inspur Beijing Elect Informat Ind Co, Beijing, Peoples R China
来源
2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024 | 2024年
关键词
Quantum machine learning; Data encoding; Metrics;
D O I
10.1145/3651671.3651689
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning algorithms use qubit encoding and quantum circuits to perform feature extraction and pattern recognition. However, the choice of data encoding methods can have a significant impact on the model's performance. To evaluate the effect of different encoding methods in a systematic way, we propose two metrics: distribution distance and distribution radius. These metrics describe how the encoded data distribute in the Hilbert space. We show that there is a positive correlation between prediction accuracy and distribution distance, and a negative correlation between prediction accuracy and distribution radius, both theoretically and experimentally. Based on our findings, we suggest a comparative evaluation of data encoding methods for quantum machine learning, which can help improve the learning efficiency.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
[11]   An introduction to quantum machine learning [J].
Schuld, Maria ;
Sinayskiy, Ilya ;
Petruccione, Francesco .
CONTEMPORARY PHYSICS, 2015, 56 (02) :172-185
[12]   On the Applicability of Quantum Machine Learning [J].
Raubitzek, Sebastian ;
Mallinger, Kevin .
ENTROPY, 2023, 25 (07)
[13]   Classical Data in Quantum Machine Learning Algorithms: Amplitude Encoding and the Relation Between Entropy and Linguistic Ambiguity [J].
Eisinger, Jurek ;
Gauderis, Ward ;
de Huybrecht, Lin ;
Wiggins, Geraint A. .
ENTROPY, 2025, 27 (04)
[14]   Quantum Machine Learning: Survey [J].
Medisetty, Pramoda ;
Evuru, Poorna Chand ;
Vulavalapudi, Veda Manohara Sunanda ;
Pallapothu, Leela Krishna Kumar ;
Annapurna, Bala .
JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (06) :971-981
[15]   Survey on Quantum Machine Learning [J].
Wang, Jian ;
Zhang, Rui ;
Jiang, Nan .
Ruan Jian Xue Bao/Journal of Software, 2024, 35 (08) :3843-3877
[16]   Distributed Quantum Machine Learning [J].
Neumann, Niels M. P. ;
Wezeman, Robert S. .
INNOVATIONS FOR COMMUNITY SERVICES, I4CS 2022, 2022, 1585 :281-293
[17]   Quantum machine learning and quantum biomimetics: A perspective [J].
Lamata, Lucas .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (03)
[18]   A Review on Quantum Machine Learning and Quantum Cryptography [J].
Solar, Mauricio ;
Alvarez, Felipe Cisternas ;
Villacura, Jean-Pierre ;
Dombrovskaia, Liuba .
MEMORIA INVESTIGACIONES EN INGENIERIA, 2024, (27) :180-199
[19]   Quantum Embedding Search for Quantum Machine Learning [J].
Nguyen, Nam ;
Chen, Kwang-Cheng .
IEEE ACCESS, 2022, 10 :41444-41456
[20]   Discriminating Quantum States with Quantum Machine Learning [J].
Quiroga, David ;
Date, Prasanna ;
Pooser, Raphael .
2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, :56-63