Study on The Effect of Encoding Method in Quantum Machine Learning

被引:0
|
作者
Xiong, Qingqing [1 ]
Jiang, Jinzhe [2 ,3 ]
Li, Chen [2 ,3 ]
Zhang, Xin [2 ,3 ]
Zhao, Yaqian [2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou, Peoples R China
[2] Inspur Elect Informat Ind Co Ltd, Jinan, Peoples R China
[3] Inspur Beijing Elect Informat Ind Co, Beijing, Peoples R China
来源
2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024 | 2024年
关键词
Quantum machine learning; Data encoding; Metrics;
D O I
10.1145/3651671.3651689
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning algorithms use qubit encoding and quantum circuits to perform feature extraction and pattern recognition. However, the choice of data encoding methods can have a significant impact on the model's performance. To evaluate the effect of different encoding methods in a systematic way, we propose two metrics: distribution distance and distribution radius. These metrics describe how the encoded data distribute in the Hilbert space. We show that there is a positive correlation between prediction accuracy and distribution distance, and a negative correlation between prediction accuracy and distribution radius, both theoretically and experimentally. Based on our findings, we suggest a comparative evaluation of data encoding methods for quantum machine learning, which can help improve the learning efficiency.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [11] On the Applicability of Quantum Machine Learning
    Raubitzek, Sebastian
    Mallinger, Kevin
    ENTROPY, 2023, 25 (07)
  • [12] An introduction to quantum machine learning
    Schuld, Maria
    Sinayskiy, Ilya
    Petruccione, Francesco
    CONTEMPORARY PHYSICS, 2015, 56 (02) : 172 - 185
  • [13] Distributed Quantum Machine Learning
    Neumann, Niels M. P.
    Wezeman, Robert S.
    INNOVATIONS FOR COMMUNITY SERVICES, I4CS 2022, 2022, 1585 : 281 - 293
  • [14] Quantum Embedding Search for Quantum Machine Learning
    Nguyen, Nam
    Chen, Kwang-Cheng
    IEEE ACCESS, 2022, 10 : 41444 - 41456
  • [15] Quantum machine learning and quantum biomimetics: A perspective
    Lamata, Lucas
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (03):
  • [16] Discriminating Quantum States with Quantum Machine Learning
    Quiroga, David
    Date, Prasanna
    Pooser, Raphael
    2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, : 56 - 63
  • [17] Discriminating Quantum States with Quantum Machine Learning
    Quiroga, David
    Date, Prasanna
    Pooser, Raphael
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 481 - 482
  • [18] Quantum Machine Learning with Quantum Image Representations
    Tuyen Nguyen
    Paik, Incheon
    Sagawa, Hiroyuki
    Truong Cong Thang
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 851 - 854
  • [19] An introduction to quantum machine learning: from quantum logic to quantum deep learning
    Leonardo Alchieri
    Davide Badalotti
    Pietro Bonardi
    Simone Bianco
    Quantum Machine Intelligence, 2021, 3
  • [20] An introduction to quantum machine learning: from quantum logic to quantum deep learning
    Alchieri, Leonardo
    Badalotti, Davide
    Bonardi, Pietro
    Bianco, Simone
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (02)