Brown adipose tissue CoQ deficiency activates the integrated stress response and FGF21-dependent mitohormesis

被引:6
作者
Chang, Ching-Fang [1 ]
Gunawan, Amanda L. [1 ]
Liparulo, Irene [1 ]
Zushin, Peter-James H. [1 ]
Vitangcol, Kaitlyn [1 ]
Timblin, Greg A. [2 ]
Saijo, Kaoru [3 ]
Wang, Biao [4 ]
Parlakgul, Gunes [1 ]
Arruda, Ana Paula [1 ]
Stahl, Andreas [1 ]
机构
[1] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Dept Surg, Ctr Bioengn & Tissue Regenerat, San Francisco, CA USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Physiol, San Francisco, CA 94158 USA
关键词
Coenzyme Q; Brown Adipose Tissue; Mitochondrial Unfolded Protein Response; FGF21; Mitohormesis; UNFOLDED PROTEIN RESPONSE; MITOCHONDRIAL FISSION; GLUCOSE-HOMEOSTASIS; FAT THERMOGENESIS; LIPID-METABOLISM; ACID-METABOLISM; PPAR-ALPHA; FGF21; EXPRESSION; ADIPOCYTES;
D O I
10.1038/s44318-023-00008-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coenzyme Q (CoQ) is essential for mitochondrial respiration and required for thermogenic activity in brown adipose tissues (BAT). CoQ deficiency leads to a wide range of pathological manifestations, but mechanistic consequences of CoQ deficiency in specific tissues, such as BAT, remain poorly understood. Here, we show that pharmacological or genetic CoQ deficiency in BAT leads to stress signals causing accumulation of cytosolic mitochondrial RNAs and activation of the eIF2 alpha kinase PKR, resulting in activation of the integrated stress response (ISR) with suppression of UCP1 but induction of FGF21 expression. Strikingly, despite diminished UCP1 levels, BAT CoQ deficiency displays increased whole-body metabolic rates at room temperature and thermoneutrality resulting in decreased weight gain on high-fat diets (HFD). In line with enhanced metabolic rates, BAT and inguinal white adipose tissue (iWAT) interorgan crosstalk caused increased browning of iWAT in BAT-specific CoQ deficient animals. This mitohormesis-like effect depends on the ATF4-FGF21 axis and BAT-secreted FGF21, revealing an unexpected role for CoQ in the modulation of whole-body energy expenditure with wide-ranging implications for primary and secondary CoQ deficiencies. How changes in levels of mitochondrial electron transport chain component coenzyme Q (CoQ) affects systemic metabolism remains poorly understood. Here CoQ deficiency in brown adipose tissue (BAT) is shown to activate mitochondrial stress signaling, white adipose tissue browning and whole-body respiration.Depletion of CoQ in BAT triggers the mitochondrial unfolded protein response and integrated stress response. BAT CoQ deficiency results in cytosolic accumulation of mitochondrial RNA, leading to PKR activation, ATF4 induction and, as a result, UCP1 suppression. FGF21 secretion from CoQ-deficient BAT influences whole-body metabolism, culminating in the metabolic remodeling of inguinal white adipose tissue. The ATF4-FGF21 axis in BAT elicits mitohormetic protective responses in peripheral tissues and metabolic adaptation to BAT CoQ deficiency. Adipose tissue browning and enhanced whole-body respiration are systemic consequences of coenzyme Q depletion and resulting mitochondrial stress signaling.
引用
收藏
页码:168 / 195
页数:28
相关论文
共 89 条
[41]   FGF21 gene therapy as treatment for obesity and insulin resistance [J].
Jimenez, Veronica ;
Jambrina, Claudia ;
Casana, Estefania ;
Sacristan, Victor ;
Munoz, Sergio ;
Darriba, Sara ;
Rodo, Jordi ;
Mallol, Cristina ;
Garcia, Miquel ;
Leon, Xavier ;
Marco, Sara ;
Ribera, Albert ;
Elias, Ivet ;
Casellas, Alba ;
Grass, Ignasi ;
Elias, Gemma ;
Ferre, Tura ;
Motas, Sandra ;
Franckhauser, Sylvie ;
Mulero, Francisca ;
Navarro, Marc ;
Haurigot, Virginia ;
Ruberte, Jesus ;
Bosch, Fatima .
EMBO MOLECULAR MEDICINE, 2018, 10 (08)
[42]   Nuclear Protein 1 Induced by ATF4 in Response to Various Stressors Acts as a Positive Regulator on the Transcriptional Activation of ATF4 [J].
Jin, Hyeon-Ok ;
Seo, Sung-Keum ;
Woo, Sang-Hyeok ;
Choe, Tae-Boo ;
Hong, Seok-Il ;
Kim, Jong-Il ;
Park, In-Chul .
IUBMB LIFE, 2009, 61 (12) :1153-1158
[43]   Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology [J].
Kasai, Shuya ;
Shimizu, Sunao ;
Tatara, Yota ;
Mimura, Junsei ;
Itoh, Ken .
BIOMOLECULES, 2020, 10 (02)
[44]   A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat [J].
Kazak, Lawrence ;
Chouchani, Edward T. ;
Jedrychowski, Mark P. ;
Erickson, Brian K. ;
Shinoda, Kosaku ;
Cohen, Paul ;
Vetrivelan, Ramalingam ;
Lu, Gina Z. ;
Laznik-Bogoslavski, Dina ;
Hasenfuss, Sebastian C. ;
Kajimura, Shingo ;
Gygi, Steve P. ;
Spiegelman, Bruce M. .
CELL, 2015, 163 (03) :643-655
[45]   FSHR-1/GPCR Regulates the Mitochondrial Unfolded Protein Response in Caenorhabditis elegans [J].
Kim, Sungjin ;
Sieburth, Derek .
GENETICS, 2020, 214 (02) :409-418
[46]   PKR Senses Nuclear and Mitochondrial Signals by Interacting with Endogenous Double-Stranded RNAs [J].
Kim, Yoosik ;
Park, Joha ;
Kim, Sujin ;
Kim, MinA ;
Kang, Myeong-Gyun ;
Kwak, Chulhwan ;
Kang, Minjeong ;
Kim, Baekgyu ;
Rhee, Hyun-Woo ;
Kim, V. Narry .
MOLECULAR CELL, 2018, 71 (06) :1051-+
[47]   Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling [J].
Kinoshita, Eiji ;
Kinoshita-Kikuta, Emiko .
PROTEOMICS, 2011, 11 (02) :319-323
[48]   FGF21 Maintains Glucose Homeostasis by Mediating the Cross Talk Between Liver and Brain During Prolonged Fasting [J].
Liang, Qingning ;
Zhong, Ling ;
Zhang, Jialiang ;
Wang, Yu ;
Bornstein, Stefan R. ;
Triggle, Chris R. ;
Ding, Hong ;
Lam, Karen S. L. ;
Xu, Aimin .
DIABETES, 2014, 63 (12) :4064-4075
[49]   Clinical aspects of coenzyme Q10: An update [J].
Littarru, Gian Paolo ;
Tiano, Luca .
NUTRITION, 2010, 26 (03) :250-254
[50]   Paradoxical resistance to diet-induced obesity in UCP1-deficient mice [J].
Liu, XT ;
Rossmeisl, M ;
McClaine, J ;
Kozak, LP .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 111 (03) :399-407