Brown adipose tissue CoQ deficiency activates the integrated stress response and FGF21-dependent mitohormesis

被引:4
作者
Chang, Ching-Fang [1 ]
Gunawan, Amanda L. [1 ]
Liparulo, Irene [1 ]
Zushin, Peter-James H. [1 ]
Vitangcol, Kaitlyn [1 ]
Timblin, Greg A. [2 ]
Saijo, Kaoru [3 ]
Wang, Biao [4 ]
Parlakgul, Gunes [1 ]
Arruda, Ana Paula [1 ]
Stahl, Andreas [1 ]
机构
[1] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Dept Surg, Ctr Bioengn & Tissue Regenerat, San Francisco, CA USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Physiol, San Francisco, CA 94158 USA
关键词
Coenzyme Q; Brown Adipose Tissue; Mitochondrial Unfolded Protein Response; FGF21; Mitohormesis; UNFOLDED PROTEIN RESPONSE; MITOCHONDRIAL FISSION; GLUCOSE-HOMEOSTASIS; FAT THERMOGENESIS; LIPID-METABOLISM; ACID-METABOLISM; PPAR-ALPHA; FGF21; EXPRESSION; ADIPOCYTES;
D O I
10.1038/s44318-023-00008-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coenzyme Q (CoQ) is essential for mitochondrial respiration and required for thermogenic activity in brown adipose tissues (BAT). CoQ deficiency leads to a wide range of pathological manifestations, but mechanistic consequences of CoQ deficiency in specific tissues, such as BAT, remain poorly understood. Here, we show that pharmacological or genetic CoQ deficiency in BAT leads to stress signals causing accumulation of cytosolic mitochondrial RNAs and activation of the eIF2 alpha kinase PKR, resulting in activation of the integrated stress response (ISR) with suppression of UCP1 but induction of FGF21 expression. Strikingly, despite diminished UCP1 levels, BAT CoQ deficiency displays increased whole-body metabolic rates at room temperature and thermoneutrality resulting in decreased weight gain on high-fat diets (HFD). In line with enhanced metabolic rates, BAT and inguinal white adipose tissue (iWAT) interorgan crosstalk caused increased browning of iWAT in BAT-specific CoQ deficient animals. This mitohormesis-like effect depends on the ATF4-FGF21 axis and BAT-secreted FGF21, revealing an unexpected role for CoQ in the modulation of whole-body energy expenditure with wide-ranging implications for primary and secondary CoQ deficiencies. How changes in levels of mitochondrial electron transport chain component coenzyme Q (CoQ) affects systemic metabolism remains poorly understood. Here CoQ deficiency in brown adipose tissue (BAT) is shown to activate mitochondrial stress signaling, white adipose tissue browning and whole-body respiration.Depletion of CoQ in BAT triggers the mitochondrial unfolded protein response and integrated stress response. BAT CoQ deficiency results in cytosolic accumulation of mitochondrial RNA, leading to PKR activation, ATF4 induction and, as a result, UCP1 suppression. FGF21 secretion from CoQ-deficient BAT influences whole-body metabolism, culminating in the metabolic remodeling of inguinal white adipose tissue. The ATF4-FGF21 axis in BAT elicits mitohormetic protective responses in peripheral tissues and metabolic adaptation to BAT CoQ deficiency. Adipose tissue browning and enhanced whole-body respiration are systemic consequences of coenzyme Q depletion and resulting mitochondrial stress signaling.
引用
收藏
页码:168 / 195
页数:28
相关论文
共 89 条
  • [1] FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes
    Abu-Odeh, Mohammad
    Zhang, Yuan
    Reilly, Shannon M.
    Ebadat, Nima
    Keinan, Omer
    Valentine, Joseph M.
    Hafezi-Bakhtiari, Maziar
    Ashayer, Hadeel
    Mamoun, Lana
    Zhou, Xin
    Zhang, Jin
    Yu, Ruth T.
    Dai, Yang
    Liddle, Christopher
    Downes, Michael
    Evans, Ronald M.
    Kliewer, Steven A.
    Mangelsdorf, David J.
    Saltiel, Alan R.
    [J]. CELL REPORTS, 2021, 35 (13):
  • [2] Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake
    Anderson, Courtney M.
    Kazantzis, Melissa
    Wang, Jinshan
    Venkatraman, Subramaniam
    Goncalves, Renata L. S.
    Quinlan, Casey L.
    Ng, Ryan
    Jastroch, Martin
    Benjamin, Daniel I.
    Nie, Biao
    Herber, Candice
    An-Angela Ngoc Van
    Park, Michael J.
    Yun, Dawee
    Chan, Karen
    Yu, Angela
    Peter Vuong
    Febbraio, Maria
    Nomura, Daniel K.
    Napoli, Joseph L.
    Brand, Martin D.
    Stahl, Andreas
    [J]. CELL REPORTS, 2015, 10 (04): : 505 - 515
  • [3] Folding the Mitochondrial UPR into the Integrated Stress Response
    Anderson, Nadine S.
    Haynes, Cole M.
    [J]. TRENDS IN CELL BIOLOGY, 2020, 30 (06) : 428 - 439
  • [4] Badman MK, 2007, CELL METAB, V5, P426, DOI 10.1016/j.cmet.2007.05.002
  • [5] Systemic effects of mitochondrial stress
    Bar-Ziv, Raz
    Bolas, Theodore
    Dillin, Andrew
    [J]. EMBO REPORTS, 2020, 21 (06)
  • [6] The mitochondrial unfolded protein response and increased longevity: Cause, consequence, or correlation?
    Bennett, Christopher F.
    Kaeberlein, Matt
    [J]. EXPERIMENTAL GERONTOLOGY, 2014, 56 : 142 - 146
  • [7] The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
    Bersuker, Kirill
    Hendricks, Joseph M.
    Li, Zhipeng
    Magtanong, Leslie
    Ford, Breanna
    Tang, Peter H.
    Roberts, Melissa A.
    Tong, Bingqi
    Maimone, Thomas J.
    Zoncu, Roberto
    Bassik, Michael C.
    Nomura, Daniel K.
    Dixon, Scott J.
    Olzmann, James A.
    [J]. NATURE, 2019, 575 (7784) : 688 - +
  • [8] H+ transport is an integral function of the mitochondrial ADP/ATP carrier
    Bertholet, Ambre M.
    Chouchani, Edward T.
    Kazak, Lawrence
    Angelin, Alessia
    Fedorenko, Andriy
    Long, Jonathan Z.
    Vidoni, Sara
    Garrity, Ryan
    Cho, Joonseok
    Terada, Naohiro
    Wallace, Douglas C.
    Spiegelman, Bruce M.
    Kirichok, Yuriy
    [J]. NATURE, 2019, 571 (7766) : 515 - +
  • [9] FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms
    BonDurant, Lucas
    Ameka, Magdalene
    Naber, Meghan
    Markan, Kathleen
    Idiga, Sharon
    Acevedo, Michael
    Walsh, Susan
    Ornitz, David
    Potthoff, Matthew
    [J]. CELL METABOLISM, 2017, 25 (04) : 935 - +
  • [10] Measuring Respiratory Activity of Adipocytes and Adipose Tissues in Real Time
    Bugge, Anne
    Dib, Lea
    Collins, Sheila
    [J]. METHODS OF ADIPOSE TISSUE BIOLOGY, PT B, 2014, 538 : 233 - 247