A new family of robust quantile-regression-based mean estimators using Sarndal approach

被引:3
作者
Anas, Malik Muhammad [1 ]
Huang, Zhengsheng [1 ]
Shahzad, Usman [2 ,3 ]
Iftikhar, Soofia [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R China
[2] Int Islamic Univ, Dept Math & Stat, Islamabad, Pakistan
[3] PMAS Arid Agr Univ, Dept Math & Stat, Rawalpindi, Pakistan
[4] Shaheed Benazir Bhutto Women Univ Peshawar, Dept Stat, Peshawar, KP, Pakistan
关键词
Quantile regression; Robust regression; Ratio-type estimators; Regression-type estimators; Simple random sampling; RATIO ESTIMATORS;
D O I
10.1080/03610918.2024.2359504
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In presence of extreme-values or outliers, the ratio-type mean estimators are prominently developed by using the robust coefficients of regression and covariance matrices. In this article, we consider quantile regression coefficients while estimating the finite population mean. Incorporating Sarndal concept, we offer quantile-regression-based mean estimators under a simple random sample design. We calculate the mean squared error (MSE) for the suggested estimators and discover that they perform better than the existing estimators. Moreover, numerical representations and a simulation study support our discoveries in theory.
引用
收藏
页数:20
相关论文
共 30 条
[1]   Ratio estimation of the population mean using auxiliary information in simple random sampling and median ranked set sampling [J].
Al-Omari, Amer Ibrahim .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (11) :1883-1890
[2]   Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information [J].
Ali, Nasir ;
Ahmad, Ishfaq ;
Hanif, Muhammad ;
Shahzad, Usman .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (04) :979-992
[3]   Compromised-Imputation and EWMA-Based Memory-Type Mean Estimators Using Quantile Regression [J].
Alomair, Mohammed Ahmed ;
Shahzad, Usman .
SYMMETRY-BASEL, 2023, 15 (10)
[4]   On optimal classes of estimators under ranked set sampling [J].
Bhushan, Shashi ;
Kumar, Anoop .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (08) :2610-2639
[5]   An improved class of robust ratio estimators by using the minimum covariance determinant estimation [J].
Bulut, Hasan ;
Zaman, Tolga .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (05) :2457-2463
[6]  
Cochran WG., 1977, Sampling Techniques, V3rd ed
[7]   GENERAL QUALITATIVE DEFINITION OF ROBUSTNESS [J].
HAMPEL, FR .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :1887-&
[8]   1972 WALD MEMORIAL LECTURES - ROBUST REGRESSION - ASYMPTOTICS, CONJECTURES AND MONTE-CARLO [J].
HUBER, PJ .
ANNALS OF STATISTICS, 1973, 1 (05) :799-821
[9]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[10]   Ratio estimators in simple random sampling [J].
Kadilar, C ;
Cingi, H .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 151 (03) :893-902