Formation of osteoconductive biograft with bioorganic scaffold, human mesenchymal stromal cells, and platelet-rich plasma with its evaluation in vitro

被引:0
作者
Danilkovich, Nataliya N. [1 ]
Kosmacheva, Svetlana M. [1 ]
Ionova, Aleksandra G. [1 ]
Krivorot, Kirill A. [2 ]
V. Malashenko, Andrei [2 ]
Mazurenko, Andrei N. [2 ]
Ossina, Natalya [3 ]
Pugachev, Evgeniy I. [3 ]
Maksimenko, Natalia A. [3 ]
Alekseev, Denis G. [3 ]
机构
[1] Republican Sci & Pract Ctr Transfusiol & Med Biote, Dolginovsky Trakt 160, Minsk 220053, BELARUS
[2] Republican Sci & Pract Ctr Traumatol & Orthoped, Lieutenant Kizhevatov str 60,Bldg 4, Minsk 220024, BELARUS
[3] Samara State Med Univ, Chapayevskaya str 79, Samara 443079, Russia
关键词
Allogeneic platelet rich plasma; Biocompatibility; Biograft; Bioorganic scaffold; Bone reconstructive surgery; Cytotoxicity; Human bone marrow mesenchymal stromal cells; Osteoconductive biograft; Osteogenic differentiation; Proliferation; Regenerative medicine; Scaffolds; STEM-CELLS; OSTEOGENIC DIFFERENTIATION; BONE; PROLIFERATION; REGENERATION; SHEETS; REPAIR;
D O I
10.1016/j.ejbt.2024.01.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Complex graft bioengineering is an actual topic in bone defects' repair. For those, different scaffolds may be seeded with mesenchymal stromal cells and growth / differentiation factors. The natural role of platelet factors in reparative processes justifies the possibility of its usage for mesenchymal stromal cell proliferation and differentiation into osteoblasts in vitro in terms of the scaffold-based bioengineering. To develop and evaluate in vitro biocompatibility and osteoconductivity of a complex biograft based on a bioorganic scaffold seeded with human bone marrow mesenchymal stromal cells and saturated with growth and differentiation factors of allogeneic platelet-rich plasma. Results: The properties of viability and adhesion of human bone marrow mesenchymal stromal cells in four types of bioorganic scaffolds were evaluated with biochemical and immunomorphological methods. Scaffold with the least cytotoxicity was used as a basis for complex biograft formation, so as a carrier for cells and platelet -derived factors. Then, cell proliferation activity and osteogenic differentiation were estimated with biochemical, morphological, histochemical and molecular -biological methods. The study showed high viability of cells in all bioorganic scaffolds but the least cytotoxicity was the one based on xenogeneic collagen sponge. We also found that allogeneic platelet -rich plasma positively affects the proliferation and osteogenic differentiation of bone marrow mesenchymal stromal cells in a complex biograft in vitro . Conclusions: The properties of the developed complex biograft characterize its biocompatibility and osteoconductivity and make it potentially suitable for regenerative medicine, particularly for reconstructive surgery of bone defects. How to cite: Danilkovich NN, Kosmacheva SM, Ionova AG, et al. Formation of osteoconductive biograft with bioorganic scaffold, human mesenchymal stromal cells, and platelet rich plasma with its evaluation in vitro . Electron J Biotechnol 2024;69. https://doi.org/10.1016/j.ejbt.2024.01.004. (c) 2024 Pontificia Universidad Cat & oacute;lica de Valparaiso. Production and hosting by Elsevier B.V. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1 / 10
页数:10
相关论文
共 61 条
[11]  
De Oliveira JF, 2003, ARTIF ORGANS, V27, P406
[12]  
Deev RV, 2008, Traumatol Orthop Russia, V47, P65
[13]   Natural Polymeric Scaffolds in Bone Regeneration [J].
Filippi, Miriam ;
Born, Gordian ;
Chaaban, Mansoor ;
Scherberich, Arnaud .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[14]  
Garg T, 2012, CRIT REV THER DRUG, V29, P1, DOI 10.1615/CritRevTherDrugCarrierSyst.v29.i1.10
[15]  
Güven S, 2012, TISSUE ENG PART C-ME, V18, P575, DOI [10.1089/ten.TEC.2011.0617, 10.1089/ten.tec.2011.0617]
[16]   Bone Regeneration, Reconstruction and Use of Osteogenic Cells; from Basic Knowledge, Animal Models to Clinical Trials [J].
Hutchings, Greg ;
Moncrieff, Lisa ;
Dompe, Claudia ;
Janowicz, Krzysztof ;
Sibiak, Rafal ;
Bryja, Artur ;
Jankowski, Maurycy ;
Mozdziak, Paul ;
Bukowska, Dorota ;
Antosik, Pawel ;
Shibli, Jamil A. ;
Dyszkiewicz-Konwinska, Marta ;
Bruska, Malgorzata ;
Kempisty, Bartosz ;
Piotrowska-Kempisty, Hanna .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (01)
[17]   Innovative Biomaterials for Bone Regrowth [J].
Iaquinta, Maria Rosa ;
Mazzoni, Elisa ;
Manfrini, Marco ;
D'Agostino, Antonio ;
Trevisiol, Lorenzo ;
Nocini, Riccardo ;
Trombelli, Leonardo ;
Barbanti-Brodano, Giovanni ;
Martini, Fernanda ;
Tognon, Mauro .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)
[18]   PREDICTION OF IN VIVO BONE FORMING POTENCY OF BONE MARROW-DERIVED HUMAN MESENCHYMAL STEM CELLS [J].
Janicki, Patricia ;
Boeuf, Stephane ;
Steck, Eric ;
Egermann, Marcus ;
Kasten, Philip ;
Richter, Wiltrud .
EUROPEAN CELLS & MATERIALS, 2011, 21 :488-507
[19]   Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds:: The specific surface area makes a difference [J].
Kasten, Philip ;
Vogel, Julia ;
Beyen, Ingo ;
Weiss, Stefan ;
Niemeyer, Philipp ;
Leo, Albrecht ;
Luginbueht, Reto .
JOURNAL OF BIOMATERIALS APPLICATIONS, 2008, 23 (02) :169-188
[20]   Nanotopography-guided tissue engineering and regenerative medicine [J].
Kim, Hong Nam ;
Jiao, Alex ;
Hwang, Nathaniel S. ;
Kim, Min Sung ;
Kang, Do Hyun ;
Kim, Deok-Ho ;
Suh, Kahp-Yang .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (04) :536-558