Area selective deposition for bottom-up atomic-scale manufacturing

被引:9
作者
Chen, Rong [1 ]
Gu, Eryan [1 ]
Cao, Kun [1 ]
Zhang, Jingming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Area selective deposition; Atomic layer deposition; Inherently selective process; Nucleation model; Surface passivation; Area deactivation/activation; Defect elimination; LAYER DEPOSITION; HIGH-QUALITY; GROWTH; NANOSTRUCTURES; NANOPARTICLES; PRECURSOR; INHIBITOR; RUTHENIUM; METALS; TIO2;
D O I
10.1016/j.ijmachtools.2024.104173
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Area selective deposition, which streamlines fabrication steps by enhancing precision and reliability, represents a cutting-edge, bottom-up atomic and close-to-atomic scale manufacturing processing. This perspective delves into the essence of area selective atomic layer deposition, exploring the critical mechanisms and additional strategies that enhance the effectiveness of area selective deposition processes. A pivotal emphasis is placed on the thermodynamic and kinetic principles driving nucleation and film growth, coupled with a thorough examination of these underlying processes. Several assisted techniques aiming at improving selectivity and enlarging the selective process window, including surface passivation, activation, deactivation, and defect elimination have been summarized. The introduction of a comprehensive area selective deposition nucleation model illuminates the complex dynamics of area selective deposition, laying a theoretical groundwork for refining deposition processes. The technical and scientific challenges associated with area selective deposition, along with the prospects for its future development and industrial application, form a key part of this perspective. By enabling atomic-level accuracy, area selective deposition paves the way for the fabrication of complex nanostructures, promising significant advancements across the semiconductor industry and a broad spectrum of technological applications, unlocking unparalleled possibilities in precision manufacturing, setting the stage for breakthroughs that will redefine the landscape of modern technology.
引用
收藏
页数:10
相关论文
共 79 条
[41]   Nanopatterning by direct-write atomic layer deposition [J].
Mackus, A. J. M. ;
Dielissen, S. A. F. ;
Mulders, J. J. L. ;
Kessels, W. M. M. .
NANOSCALE, 2012, 4 (15) :4477-4480
[42]   From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity [J].
Mackus, Adriaan J. M. ;
Merkx, Marc J. M. ;
Kessels, Wilhelmus M. M. .
CHEMISTRY OF MATERIALS, 2019, 31 (01) :2-12
[43]   Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis [J].
Mackus, Adriaan J. M. ;
Verheijen, Marcel A. ;
Leick, Noemi ;
Bol, Ageeth A. ;
Kessels, Wilhelmus M. M. .
CHEMISTRY OF MATERIALS, 2013, 25 (09) :1905-1911
[44]   Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition [J].
Mameli, Alfredo ;
Karasulu, Bora ;
Verheijen, Marcel A. ;
Barcones, Beatriz ;
Macco, Bart ;
Mackus, Adriaan J. M. ;
Kessels, Wilhelmus M. M. Erwin ;
Roozeboom, Fred .
CHEMISTRY OF MATERIALS, 2019, 31 (04) :1250-1257
[45]   Area-Selective Atomic Layer Deposition of SiO2 Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle [J].
Mameli, Alfredo ;
Merkx, Marc J. M. ;
Karasulu, Bora ;
Roozeboom, Fred ;
Kessels, Wilhelmus M. M. ;
Mackus, Adriaan J. M. .
ACS NANO, 2017, 11 (09) :9303-9311
[46]   Relation between Reactive Surface Sites and Precursor Choice for Area-Selective Atomic Layer Deposition Using Small Molecule Inhibitors [J].
Merkx, Marc J. M. ;
Angelidis, Athanasios ;
Mameli, Alfredo ;
Li, Jun ;
Lemaire, Paul C. ;
Sharma, Kashish ;
Hausmann, Dennis M. ;
Kessels, Wilhelmus M. M. ;
Sandoval, Tania E. ;
Mackus, Adriaan J. M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (10) :4845-4853
[47]   Mechanism of Precursor Blocking by Acetylacetone Inhibitor Molecules during Area-Selective Atomic Layer Deposition of SiO2 [J].
Merkx, Marc J. M. ;
Sandoval, Tania E. ;
Hausmann, Dennis M. ;
Kessels, Wilhelmus M. M. ;
Mackus, Adriaan J. M. .
CHEMISTRY OF MATERIALS, 2020, 32 (08) :3335-3345
[48]   Area selective CVD of metallic films from molybdenum, iron, and ruthenium carbonyl precursors: Use of ammonia to inhibit nucleation on oxide surfaces [J].
Mohimi, Elham ;
Zhang, Zhejun V. ;
Liu, Sumeng ;
Mallek, Justin L. ;
Girolami, Gregory S. ;
Abelson, John R. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (04)
[49]   Area Selective Deposition of Metals from the Electrical Resistivity of the Substrate [J].
Nadhom, Hama ;
Boyd, Robert ;
Rouf, Polla ;
Lundin, Daniel ;
Pedersen, Henrik .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (17) :4130-4133
[50]   Area-Selective Deposition of Ruthenium Using Homometallic Precursor Inhibitor [J].
Nguyen, Chi Thang ;
Cho, Eun-Hyoung ;
Trinh, Ngoc Le ;
Gu, Bonwook ;
Lee, Mingyu ;
Lee, Sunghee ;
Lee, Jeong-Yub ;
Kang, Youngho ;
Lee, Han-Bo-Ram .
CHEMISTRY OF MATERIALS, 2023, 35 (14) :5331-5340