Area selective deposition for bottom-up atomic-scale manufacturing

被引:9
作者
Chen, Rong [1 ]
Gu, Eryan [1 ]
Cao, Kun [1 ]
Zhang, Jingming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Area selective deposition; Atomic layer deposition; Inherently selective process; Nucleation model; Surface passivation; Area deactivation/activation; Defect elimination; LAYER DEPOSITION; HIGH-QUALITY; GROWTH; NANOSTRUCTURES; NANOPARTICLES; PRECURSOR; INHIBITOR; RUTHENIUM; METALS; TIO2;
D O I
10.1016/j.ijmachtools.2024.104173
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Area selective deposition, which streamlines fabrication steps by enhancing precision and reliability, represents a cutting-edge, bottom-up atomic and close-to-atomic scale manufacturing processing. This perspective delves into the essence of area selective atomic layer deposition, exploring the critical mechanisms and additional strategies that enhance the effectiveness of area selective deposition processes. A pivotal emphasis is placed on the thermodynamic and kinetic principles driving nucleation and film growth, coupled with a thorough examination of these underlying processes. Several assisted techniques aiming at improving selectivity and enlarging the selective process window, including surface passivation, activation, deactivation, and defect elimination have been summarized. The introduction of a comprehensive area selective deposition nucleation model illuminates the complex dynamics of area selective deposition, laying a theoretical groundwork for refining deposition processes. The technical and scientific challenges associated with area selective deposition, along with the prospects for its future development and industrial application, form a key part of this perspective. By enabling atomic-level accuracy, area selective deposition paves the way for the fabrication of complex nanostructures, promising significant advancements across the semiconductor industry and a broad spectrum of technological applications, unlocking unparalleled possibilities in precision manufacturing, setting the stage for breakthroughs that will redefine the landscape of modern technology.
引用
收藏
页数:10
相关论文
共 79 条
[1]   Proximity Effects of the Selective Atomic Layer Deposition of Cobalt on the Nanoscale: Implications for Interconnects [J].
Breeden, Michael ;
Wang, Victor ;
Spiegelman, Jacob ;
Anurag, Ashay ;
Wolf, Steven F. ;
Moser, Daniel ;
Kanjolia, Ravindra K. ;
Moinpour, Mansour ;
Woodruff, Jacob ;
Nemani, Srinivas ;
Wong, Keith ;
Winter, Charles H. ;
Kummel, Andrew C. .
ACS APPLIED NANO MATERIALS, 2021, 4 (08) :8447-8454
[2]   Dependence of inherent selective atomic layer deposition of FeOx on Pt nanoparticles on the coreactant and temperature [J].
Cai, Jiaming ;
Merkx, Marc J. M. ;
Lan, Yuxiao ;
Jing, Yao ;
Cao, Kun ;
Wen, Yanwei ;
Kessels, Wilhelmus M. M. ;
Mackus, Adriaan J. M. ;
Chen, Rong .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (01)
[3]   Atomic layer deposition for advanced nanomanufacturing [J].
Cao Kun ;
Liu Xiao ;
Yang Fan ;
Chen Rong .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (09) :2218-2220
[4]   Vacuum ultraviolet photochemical selective area atomic layer deposition of Al2O3 dielectrics [J].
Chalker, P. R. ;
Marshall, P. A. ;
Dawson, K. ;
Brunell, I. F. ;
Sutcliffe, C. J. ;
Potter, R. J. .
AIP ADVANCES, 2015, 5 (01)
[5]   Fully Self-Aligned Via Integration for Interconnect Scaling Beyond 3nm Node [J].
Chen, H. P. ;
Wu, Y. H. ;
Huang, H. Y. ;
Tsai, C. H. ;
Lee, S. K. ;
Lee, C. C. ;
Wei, T. H. ;
Yao, H. C. ;
Wang, Y. C. ;
Liao, C. Y. ;
Chang, H. K. ;
Lu, C. W. ;
Shue, Winston S. ;
Cao, Min .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[6]   Chemistry for positive pattern transfer using area-selective atomic layer deposition [J].
Chen, R ;
Bent, SF .
ADVANCED MATERIALS, 2006, 18 (08) :1086-+
[7]   Investigation of self-assembled monolayer resists for hafnium dioxide atomic layer deposition [J].
Chen, R ;
Kim, H ;
McIntyre, PC ;
Bent, SF .
CHEMISTRY OF MATERIALS, 2005, 17 (03) :536-544
[8]   Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation [J].
Chen, Rong ;
Cao, Kun ;
Wen, Yanwei ;
Yang, Fan ;
Wang, Jian ;
Liu, Xiao ;
Shan, Bin .
INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (02)
[9]   Inhibitor-Free Area-Selective Atomic Layer Deposition with Feature Size Down to Nearly 10 nm [J].
Chou, Chun-Yi ;
Mo, Chi-Lin ;
Chuu, Chih-Piao ;
Wang, Ting-Yun ;
Huang, Chin-Chao ;
Hou, Cheng-Hung ;
Chuang, Chun-Ho ;
Jiang, Yu-Sen ;
Shyue, Jing-Jong ;
Chen, Miin-Jang .
CHEMISTRY OF MATERIALS, 2023, 35 (03) :1107-1115
[10]   Perspective: New process technologies required for future devices and scaling [J].
Clark, R. ;
Tapily, K. ;
Yu, K. -H. ;
Hakamata, T. ;
Consiglio, S. ;
O'Meara, D. ;
Wajda, C. ;
Smith, J. ;
Leusink, G. .
APL MATERIALS, 2018, 6 (05)